# https://python.langchain.com/docs/tutorials/rag/ import gradio as gr from langchain import hub from langchain_chroma import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_mistralai import MistralAIEmbeddings from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_mistralai import ChatMistralAI from langchain_community.document_loaders import PyPDFLoader import requests from pathlib import Path from langchain_community.document_loaders import WebBaseLoader, ArxivLoader import bs4 from langchain_core.rate_limiters import InMemoryRateLimiter from urllib.parse import urljoin def initialize(arxivcode): #loader = ArxivLoader(query=str(arxivcode),) #docs = loader.load() #retriever = ArxivRetriever( # load_max_docs=2, # get_full_documents=True, #) #docs = retriever.invoke(str(arxivcode)) #for i in range(len(docs)): # docs[i].metadata['Published'] = str(docs[i].metadata['Published']) # Load, chunk and index the contents of the blog. url = ['https://arxiv.org/abs/%s' % arxivcode] loader = WebBaseLoader(url) docs = loader.load() # LLM model rate_limiter = InMemoryRateLimiter( requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request, max_bucket_size=10, # Controls the maximum burst size. ) llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter) # Embeddings embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1" # embed_model = "nvidia/NV-Embed-v2" embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model) # embeddings = MistralAIEmbeddings() def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) def RAG(llm, docs, embeddings): # Split text text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) # Create vector store vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings) # Retrieve and generate using the relevant snippets of the documents retriever = vectorstore.as_retriever() # Prompt basis example for RAG systems prompt = hub.pull("rlm/rag-prompt") # Create the chain rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) return rag_chain return RAG(llm, docs, embeddings) def handle_prompt(message, history, arxivcode, rag_chain): try: # Stream output out="" for chunk in rag_chain.stream(message): out += chunk yield out except: raise gr.Error("Requests rate limit exceeded") greetingsmessage = "Hi, I'm your personal arXiv reader. Ask me questions about the arXiv paper above" with gr.Blocks() as demo: arxiv_code = gr.Textbox("", label="arxiv.number") rag_chain = initialize(arxiv_code) gr.ChatInterface(handle_prompt, type="messages", theme=gr.themes.Soft(), description=greetingsmessage, additional_inputs=[arxiv_code, rag_chain] ) if __name__=='__main__': demo.launch()