File size: 6,036 Bytes
3b87861 c451602 1e14657 4cad25d 0c63622 1e14657 3b87861 c451602 1e14657 4cad25d 630c584 4cad25d 630c584 8a8ce66 157537f 0c3cdf9 157537f 9b1c0bb 40ea73f 1236476 98cf4b9 b24edfb 98cf4b9 b24edfb fb273d7 445ff53 71955cc 1e14657 180eaf9 da43c80 dfa4c0a 12e6a54 4cad25d 9f8a098 4cad25d 157537f 9b1c0bb b3c7ae9 9b1c0bb 98cf4b9 b24edfb 98cf4b9 da43c80 180eaf9 da43c80 c35bc0c d9217c2 3b87861 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import gradio as gr
import hashlib
import tempfile
import requests
import pandas as pd
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
def fx(x:str):
hash=hashlib.md5()
hash.update(x.encode(encoding='utf-8'))
return hash.hexdigest()
manager = ModelManager()
model_path, config_path, model_item = manager.download_model("tts_models/zh-CN/baker/tacotron2-DDC-GST")
synthesizer = Synthesizer(
model_path, config_path, None, None, None,
)
def inference(text: str):
wavs = synthesizer.tts(text)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
synthesizer.save_wav(wavs, fp)
return fp.name
def fx_m(s:str):
headers= {"Content-Type": "application/json"}
url="https://m-formatter.azurewebsites.net/api/v2"
data={'code':s,'resultType':'text'}
respose=requests.post(url,json=data,headers=headers)
ms=respose.json()
return ms['result']
def fx_dax(s:str):
url="https://www.daxformatter.com/"
data = {"embed":"1","l":"short","fx":s}
ct=requests.post(url = url,data = data)
html=ct.text
s1=html.split('<div class="result">')[1]
s2='<div class="result">'+s1.split('<a href')[0]+'<a href="https://pbihub.cn/users/44" target="_top"><img src="https://pbihub.cn/uploads/avatars/44_1536391253.jpg?imageView2/1/w/380/h/380" alt="万剑归宗" class="badge" width="380" height="380"></a>'
return s2
def fx_datatable(s:str):
a=exec(s)
return {k: v for k, v in locals().items() if isinstance(v,pd.DataFrame)}
def fx_dd(tk:str,s:str):
headers= {"Content-Type": "application/json"}
url="https://oapi.dingtalk.com/robot/send?access_token="+tk
data={'msgtype':'text','text':{'title': '吹牛逼',"content": s}, 'at': {'atMobiles': [], 'isAtAll': True}}
response=requests.post(url,json=data,headers=headers)
return response.text
def dd_ocr(tk,sl,dt):
headers= {"Content-Type": "application/json"}
url="https://oapi.dingtalk.com/topapi/ocr/structured/recognize?access_token="+tk
dc={"身份证":"idcard","增值税发票":"invoice","营业执照":"blicense","银行卡":"bank_card","车牌":"car_no","机动车发票":"car_invoice","驾驶证":"driving_license","行驶证":"vehicle_license","火车票":"train_ticket","定额发票":"quota_invoice","出租车发票":"taxi_ticket","机票行程单":"air_itinerary","审批表单":"approval_table","花名册":"roster"}
data={"image_url":sl,"type":dc[dt]}
response=requests.post(url,json=data,headers=headers)
return response.json()
demo=gr.Blocks()
with demo:
with gr.Tabs():
with gr.TabItem("测试1"):
with gr.Column():
text_input=gr.Textbox(placeholder='请输入测试字符串',label="请输入需要MD5加密的测试内容")
text_output=gr.Textbox(label="输出",visible=False)
text_input.change(fn=lambda visible: gr.update(visible=True), inputs=text_input, outputs=text_output)
bb_button=gr.Button("运行")
bb_button.click(fx, inputs=text_input, outputs=text_output,api_name='md5')
with gr.Column():
gr.Markdown("# TTS文本字符串转语音合成训练")
TTS_input=gr.Textbox(label="输入文本",default="你好吗?我很好。")
TTS_button=gr.Button("合成")
TTS_button.click(inference, inputs=TTS_input, outputs=gr.Audio(label="输出合成结果"),api_name='tts')
with gr.TabItem("M-Formatter"):
gr.Markdown("# PowerQuery M语言脚本格式化测试")
M_input=gr.Textbox(label="请填写需要格式化的M脚本",default="let a=1,b=2 in a+b",lines=18)
M_output=gr.Textbox(label="格式化结果",lines=50)
M_button=gr.Button("开始格式化>>")
M_button.click(fx_m, inputs=M_input, outputs=M_output,api_name='M')
with gr.TabItem("DAX-Formatter"):
gr.Markdown("# DAX表达式格式化测试")
with gr.Row():
DAX_input=gr.Textbox(label="请填写需要格式化的DAX表达式",default="扯淡=CALCULATE(VALUES('价格表'[单价]),FILTER('价格表','价格表'[产品]='销售表'[产品]))",lines=28)
DAX_button=gr.Button("格式化>>")
DAX_output=gr.HTML(label="DAX表达式格式化结果")
DAX_button.click(fx_dax, inputs=DAX_input, outputs=DAX_output,api_name='DAX')
with gr.TabItem("Python-Execute"):
gr.Markdown("# Python脚本测试")
d_input=gr.Textbox(label="请填写需要datatable库处理的脚本",lines=18)
d_output=gr.JSON(label="输出>")
d_button=gr.Button("开始编译>>")
d_button.click(fx_datatable, inputs=d_input, outputs=d_output,api_name='datatable')
with gr.TabItem("钉钉群消息推送"):
gr.Markdown("# 推送测试")
dd_input=[gr.Textbox(label="请填写机器人token"),gr.Textbox(label="请填写需要推送的信息",lines=10)]
dd_output=gr.Textbox(label="推送提示")
dd_button=gr.Button("提交")
dd_button.click(fx_dd, inputs=dd_input, outputs=dd_output,api_name='dingding_robot')
with gr.TabItem("钉钉ocr"):
gr.Markdown("# 网络图片OCR识别")
ocr_input=[gr.Textbox(label="请填写ocr_token"),gr.Textbox(label="请填写图片网址"),gr.Radio(["身份证","增值税发票","营业执照","银行卡","车牌","机动车发票","驾驶证","行驶证","火车票","定额发票","出租车发票","机票行程单","审批表单","花名册"],value="营业执照增值税发票",label="请选择识别类型:")]
ocr_button=gr.Button("开始识别>>")
ocr_output=gr.JSON(label="识别结果")
ocr_button.click(dd_ocr, inputs=ocr_input, outputs=ocr_output,api_name='dingding_ocr')
demo.launch()
|