Spaces:
Runtime error
Runtime error
""" | |
import tensorflow as tf | |
inception_net = tf.keras.applications.MobileNetV2() | |
import requests | |
# Download human-readable labels for ImageNet. | |
response = requests.get("https://git.io/JJkYN") | |
labels = response.text.split("\n") | |
def classify_image(inp): | |
inp = inp.reshape((-1, 224, 224, 3)) | |
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) | |
prediction = inception_net.predict(inp).flatten() | |
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} | |
return confidences | |
gr.Interface(fn=classify_image, | |
inputs=gr.Image(shape=(224, 224)), | |
outputs=gr.Label(num_top_classes=3), | |
#examples=["banana.jpg", "car.jpg"] | |
).launch(share=True) | |
""" | |
import gradio as gr | |
import tensorflow as tf | |
from tensorflow import keras | |
import requests | |
# load pre-trained model | |
model_path = "/Users/chaninderrishi/Desktop/ML/projects/waste-sorting/models/prod3" | |
pre_trained_model = keras.models.load_model(model_path) | |
labels = ['compost', 'e-waste', 'recycle', 'trash'] | |
def classify_image(input): | |
prediction = pre_trained_model.predict(input) | |
confidences = {labels[i]: float(prediction[i]) for i in range(4)} | |
return confidences | |
iface = gr.Interface(fn=classify_image, | |
inputs=gr.Image(shape=(224, 224)), | |
outputs=gr.Label(num_top_classes=3), | |
#examples=["banana.jpg", "car.jpg"] | |
) | |
iface.launch(share=True) | |
""" | |
def greet(name): | |
return "Hello " + name + "!!" | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() | |
""" |