Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,26 @@
|
|
1 |
-
"""
|
2 |
-
import tensorflow as tf
|
3 |
-
|
4 |
-
inception_net = tf.keras.applications.MobileNetV2()
|
5 |
-
|
6 |
-
import requests
|
7 |
-
|
8 |
-
# Download human-readable labels for ImageNet.
|
9 |
-
response = requests.get("https://git.io/JJkYN")
|
10 |
-
labels = response.text.split("\n")
|
11 |
-
|
12 |
-
def classify_image(inp):
|
13 |
-
inp = inp.reshape((-1, 224, 224, 3))
|
14 |
-
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
|
15 |
-
prediction = inception_net.predict(inp).flatten()
|
16 |
-
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
17 |
-
return confidences
|
18 |
-
|
19 |
-
gr.Interface(fn=classify_image,
|
20 |
-
inputs=gr.Image(shape=(224, 224)),
|
21 |
-
outputs=gr.Label(num_top_classes=3),
|
22 |
-
#examples=["banana.jpg", "car.jpg"]
|
23 |
-
).launch(share=True)
|
24 |
-
"""
|
25 |
-
|
26 |
import gradio as gr
|
27 |
import tensorflow as tf
|
28 |
from tensorflow import keras
|
29 |
-
import requests
|
30 |
|
31 |
|
32 |
# load pre-trained model
|
33 |
model_path = "/Users/chaninderrishi/Desktop/ML/projects/waste-sorting/models/prod3"
|
34 |
pre_trained_model = keras.models.load_model(model_path)
|
35 |
|
|
|
36 |
labels = ['compost', 'e-waste', 'recycle', 'trash']
|
37 |
|
|
|
38 |
def classify_image(input):
|
39 |
prediction = pre_trained_model.predict(input)
|
40 |
confidences = {labels[i]: float(prediction[i]) for i in range(4)}
|
41 |
return confidences
|
42 |
|
43 |
-
|
44 |
iface = gr.Interface(fn=classify_image,
|
45 |
inputs=gr.Image(shape=(224, 224)),
|
46 |
outputs=gr.Label(num_top_classes=3),
|
47 |
#examples=["banana.jpg", "car.jpg"]
|
48 |
)
|
49 |
|
50 |
-
iface.launch(share=True)
|
51 |
-
"""
|
52 |
-
def greet(name):
|
53 |
-
return "Hello " + name + "!!"
|
54 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
55 |
-
iface.launch()
|
56 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
from tensorflow import keras
|
|
|
4 |
|
5 |
|
6 |
# load pre-trained model
|
7 |
model_path = "/Users/chaninderrishi/Desktop/ML/projects/waste-sorting/models/prod3"
|
8 |
pre_trained_model = keras.models.load_model(model_path)
|
9 |
|
10 |
+
# classification labels
|
11 |
labels = ['compost', 'e-waste', 'recycle', 'trash']
|
12 |
|
13 |
+
|
14 |
def classify_image(input):
|
15 |
prediction = pre_trained_model.predict(input)
|
16 |
confidences = {labels[i]: float(prediction[i]) for i in range(4)}
|
17 |
return confidences
|
18 |
|
19 |
+
# create Gradio interface
|
20 |
iface = gr.Interface(fn=classify_image,
|
21 |
inputs=gr.Image(shape=(224, 224)),
|
22 |
outputs=gr.Label(num_top_classes=3),
|
23 |
#examples=["banana.jpg", "car.jpg"]
|
24 |
)
|
25 |
|
26 |
+
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|