""" import tensorflow as tf inception_net = tf.keras.applications.MobileNetV2() import requests # Download human-readable labels for ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences gr.Interface(fn=classify_image, inputs=gr.Image(shape=(224, 224)), outputs=gr.Label(num_top_classes=3), #examples=["banana.jpg", "car.jpg"] ).launch(share=True) """ import gradio as gr import tensorflow as tf from tensorflow import keras import requests # load pre-trained model model_path = "/Users/chaninderrishi/Desktop/ML/projects/waste-sorting/models/prod3" pre_trained_model = keras.models.load_model(model_path) labels = ['compost', 'e-waste', 'recycle', 'trash'] def classify_image(input): prediction = pre_trained_model.predict(input) confidences = {labels[i]: float(prediction[i]) for i in range(4)} return confidences iface = gr.Interface(fn=classify_image, inputs=gr.Image(shape=(224, 224)), outputs=gr.Label(num_top_classes=3), #examples=["banana.jpg", "car.jpg"] ) iface.launch(share=True) """ def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() """