Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -242,19 +242,16 @@ def sepia(input_img):
|
|
242 |
title = "SegFormer(ADE20k) in TensorFlow"
|
243 |
description = """
|
244 |
|
245 |
-
This is demo TensorFlow SegFormer from 🤗 `transformers` official package. The pre-trained model is optimized to segment scene specific images. We are currently using ONNX model converted from the TensorFlow based SegFormer to improve the latency
|
246 |
|
247 |
"""
|
248 |
|
249 |
-
article = "Check out the [repository](https://github.com/deep-diver/segformer-tf-transformers) to find out how to make inference, finetune the model with custom dataset, and further information."
|
250 |
-
|
251 |
demo = gr.Interface(sepia,
|
252 |
gr.inputs.Image(type="filepath"),
|
253 |
outputs=['plot'],
|
254 |
examples=["ADE_val_00000001.jpeg"],
|
255 |
allow_flagging='never',
|
256 |
title=title,
|
257 |
-
description=description
|
258 |
-
article=article)
|
259 |
|
260 |
demo.launch()
|
|
|
242 |
title = "SegFormer(ADE20k) in TensorFlow"
|
243 |
description = """
|
244 |
|
245 |
+
This is demo TensorFlow SegFormer from 🤗 `transformers` official package. The pre-trained model is optimized to segment scene specific images. We are **currently using ONNX model converted from the TensorFlow based SegFormer to improve the latency**. The average latency of an inference is **21** and **8** seconds for TensorFlow and ONNX converted models respectively (in Colab). Check out the [repository](https://github.com/deep-diver/segformer-tf-transformers) to find out how to make inference, finetune the model with custom dataset, and further information.
|
246 |
|
247 |
"""
|
248 |
|
|
|
|
|
249 |
demo = gr.Interface(sepia,
|
250 |
gr.inputs.Image(type="filepath"),
|
251 |
outputs=['plot'],
|
252 |
examples=["ADE_val_00000001.jpeg"],
|
253 |
allow_flagging='never',
|
254 |
title=title,
|
255 |
+
description=description)
|
|
|
256 |
|
257 |
demo.launch()
|