File size: 41,156 Bytes
0fc4c70 0b8d6ef 0fc4c70 8a556b1 0fc4c70 8a556b1 0fc4c70 dbd6b54 4133d16 dbd6b54 6b091bf 4f0b12e 6b091bf 4f0b12e 6b091bf 4f0b12e 6b091bf 4f0b12e 6b091bf 4f0b12e 80d6532 6b091bf 4f0b12e 6b091bf 4f0b12e 6b091bf 4f0b12e 80d6532 4f0b12e 0fc4c70 4f0b12e 0fc4c70 533fe99 0fc4c70 20f67f1 0398b2f 20f67f1 0398b2f 533fe99 4133d16 0fc4c70 f026784 0fc4c70 20f67f1 0fc4c70 f026784 0fc4c70 20f67f1 0fc4c70 f026784 0fc4c70 4133d16 0fc4c70 f026784 0fc4c70 20f67f1 0fc4c70 0398b2f 9d5d0ed 0fc4c70 467b24d 02b8554 0fc4c70 533fe99 8a556b1 533fe99 0398b2f 4133d16 0398b2f 533fe99 20f67f1 8a556b1 0fc4c70 4133d16 0fc4c70 8648922 9694dd0 8648922 0fc4c70 4133d16 0fc4c70 3f64412 0fc4c70 3f64412 0fc4c70 3f64412 0fc4c70 3f64412 0fc4c70 3f64412 0fc4c70 0398b2f 20f67f1 8a556b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 |
import os
import spaces
import cv2
import glob
import time
import torch
import shutil
import argparse
import platform
import datetime
import subprocess
import insightface
import onnxruntime
import numpy as np
import gradio as gr
import threading
import queue
from tqdm import tqdm
import concurrent.futures
from nsfw_checker import NSFWChecker
from face_swapper import Inswapper, paste_to_whole
from face_analyser import detect_conditions, get_analysed_data, swap_options_list
from face_parsing import init_parsing_model, get_parsed_mask, mask_regions, mask_regions_to_list
from face_enhancer import get_available_enhancer_names, load_face_enhancer_model, cv2_interpolations
from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref, create_image_grid
## ------------------------------ USER ARGS ------------------------------
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd())
parser.add_argument("--batch_size", help="Gpu batch size", default=32)
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False)
parser.add_argument("--colab", action="store_true", help="Enable colab mode", default=False)
parser.add_argument("--device", default="cuda", type=str)
user_args = parser.parse_args()
from huggingface_hub import hf_hub_download
import requests
import os
from typing import Any, List, Callable
import time
import tempfile
import subprocess
import gfpgan
import sys
print("Installing cudnn 9")
# Function to get the installed version of a pip package
def get_pip_version(package_name):
try:
result = subprocess.run(
[sys.executable, '-m', 'pip', 'show', package_name],
capture_output=True,
text=True,
check=True
)
output = result.stdout
version_line = next(
line for line in output.split('\n') if line.startswith('Version:')
)
return version_line.split(': ')[1]
except subprocess.CalledProcessError as e:
print(f"Error executing command: {e}")
return None
# Function to execute shell commands safely
def run_command(command, description=""):
try:
print(f"Executing: {' '.join(command) if isinstance(command, list) else command}")
result = subprocess.run(command, shell=isinstance(command, str), check=True, text=True, capture_output=True)
if result.stdout:
print(result.stdout)
if result.stderr:
print(result.stderr)
except subprocess.CalledProcessError as e:
print(f"Error during {description}: {e}")
print("Starting setup for CUDA 12.4 and cuDNN 9.2.1")
# Step 1: Uninstall conflicting ONNX Runtime packages
print("\nUninstalling conflicting ONNX Runtime packages...")
run_command([sys.executable, '-m', 'pip', 'uninstall', '-y', 'onnxruntime'], "uninstalling onnxruntime")
run_command([sys.executable, '-m', 'pip', 'uninstall', '-y', 'onnxruntime-gpu'], "uninstalling onnxruntime-gpu")
run_command([sys.executable, '-m', 'pip', 'install', '-y', 'moviepy'], "installing moviepy")
# Step 2: Install cuDNN 9.2.1 for CUDA 12.4
print("\nInstalling cuDNN 9.2.1 for CUDA 12.4...")
package_name = 'nvidia-cudnn-cu12' # Ensure this package corresponds to cuDNN 9.2.1
desired_version = '9.2.1'
installed_version = get_pip_version(package_name)
if installed_version:
print(f"Installed version of {package_name}: {installed_version}")
if installed_version != desired_version:
print(f"Updating {package_name} to version {desired_version}...")
run_command([sys.executable, '-m', 'pip', 'install', f'{package_name}=={desired_version}'], f"installing {package_name}=={desired_version}")
else:
print(f"{package_name} not found. Installing version {desired_version}...")
run_command([sys.executable, '-m', 'pip', 'install', f'{package_name}=={desired_version}'], f"installing {package_name}=={desired_version}")
# Step 3: Verify installation of cuDNN libraries
print("\nVerifying cuDNN library installation...")
find_cudnn_cmd = "find / -path /proc -prune -o -path /sys -prune -o -name 'libcudnn*' -print"
run_command(find_cudnn_cmd, "searching for libcudnn libraries")
# Step 4: Move and copy necessary CUDA libraries
print("\nOrganizing CUDA libraries...")
destination_path = '/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/'
os.makedirs(destination_path, exist_ok=True)
library_commands = [
# Moving libraries
['mv', '/usr/local/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12', destination_path],
['mv', '/usr/local/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12', destination_path],
['mv', '/usr/local/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11', destination_path],
['mv', '/usr/local/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.11', destination_path],
['mv', '/usr/local/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12', destination_path],
['mv', '/usr/local/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12', destination_path],
# Copying libraries
['cp', '/usr/local/lib/python3.10/site-packages/nvidia/curand/lib/libcurand.so.10', destination_path],
['cp', '/usr/local/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolver.so.11', destination_path],
['cp', '/usr/local/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolverMg.so.11', destination_path],
['cp', '/usr/local/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12', destination_path],
]
for cmd in library_commands:
run_command(cmd, f"processing {cmd[0]} command")
# Step 5: Verify CUDA libraries
print("\nVerifying CUDA libraries...")
find_cuda_cmd = "find / -path /proc -prune -o -path /sys -prune -o -name 'libcu*' -print"
run_command(find_cuda_cmd, "searching for CUDA libraries")
# Step 6: Install only the GPU variant of ONNX Runtime
print("\nInstalling ONNX Runtime GPU variant...")
run_command([sys.executable, '-m', 'pip', 'install', 'onnxruntime-gpu'], "installing onnxruntime-gpu")
# Step 7: Install PyTorch with CUDA 12.4 support
print("\nInstalling PyTorch with CUDA 12.4 support...")
run_command([
sys.executable, '-m', 'pip', 'install', '-U',
'torch', 'torchvision', 'torchaudio',
'--index-url', 'https://download.pytorch.org/whl/cu124'
], "installing PyTorch with CUDA 12.4")
print("\nSetup complete.")
print("---------------------")
print(ort.get_available_providers())
from moviepy.editor import *
def conditional_download(download_directory_path, urls):
if not os.path.exists(download_directory_path):
os.makedirs(download_directory_path)
for url in urls:
filename = url.split('/')[-1]
file_path = os.path.join(download_directory_path, filename)
if not os.path.exists(file_path):
print(f"Downloading {filename}...")
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"{filename} downloaded successfully.")
else:
print(f"Failed to download {filename}. Status code: {response.status_code}")
else:
print(f"{filename} already exists. Skipping download.")
model_path = hf_hub_download(repo_id="countfloyd/deepfake", filename="inswapper_128.onnx")
conditional_download("./", ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth'])
USE_CUDA = True
BATCH_SIZE = 512
## ------------------------------ DEFAULTS ------------------------------
USE_COLAB = user_args.colab
DEF_OUTPUT_PATH = user_args.out_dir
WORKSPACE = None
OUTPUT_FILE = None
CURRENT_FRAME = None
STREAMER = None
DETECT_CONDITION = "best detection"
DETECT_SIZE = 640
DETECT_THRESH = 0.6
NUM_OF_SRC_SPECIFIC = 10
MASK_INCLUDE = [
"Skin",
"R-Eyebrow",
"L-Eyebrow",
"L-Eye",
"R-Eye",
"Nose",
"Mouth",
"L-Lip",
"U-Lip",
"Hair"
]
MASK_SOFT_KERNEL = 17
MASK_SOFT_ITERATIONS = 10
MASK_BLUR_AMOUNT = 0.1
MASK_ERODE_AMOUNT = 0.15
FACE_SWAPPER = None
FACE_ANALYSER = None
FACE_ENHANCER = None
FACE_PARSER = None
NSFW_DETECTOR = None
FACE_ENHANCER_LIST = ["NONE"]
FACE_ENHANCER_LIST.extend(get_available_enhancer_names())
FACE_ENHANCER_LIST.extend(cv2_interpolations)
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
# Note: Non CUDA users may change settings here
if USE_CUDA:
available_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in available_providers:
print("\n********** Running on CUDA **********\n")
PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
USE_CUDA = False
print("\n********** CUDA unavailable running on CPU **********\n")
PROVIDER = ["CPUExecutionProvider"]
else:
USE_CUDA = False
print("\n********** Running on CPU **********\n")
PROVIDER = ["CPUExecutionProvider"]
device = "cuda" if USE_CUDA else "cpu"
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
## ------------------------------ LOAD MODELS ------------------------------
def load_face_analyser_model(name="buffalo_l"):
global FACE_ANALYSER
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
FACE_ANALYSER.prepare(
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
)
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
global FACE_SWAPPER
if FACE_SWAPPER is None:
batch = int(BATCH_SIZE) if device == "cuda" else 1
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
global FACE_PARSER
if FACE_PARSER is None:
FACE_PARSER = init_parsing_model(path, device="cuda")
def load_nsfw_detector_model(path="./assets/pretrained_models/open-nsfw.onnx"):
global NSFW_DETECTOR
if NSFW_DETECTOR is None:
NSFW_DETECTOR = NSFWChecker(model_path=path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
load_face_analyser_model()
load_face_swapper_model()
## ------------------------------ MAIN PROCESS ------------------------------
def process(
input_type,
image_path,
video_path,
directory_path,
source_path,
output_path,
output_name,
keep_output_sequence,
condition,
age,
distance,
face_enhancer_name,
enable_face_parser,
mask_includes,
mask_soft_kernel,
mask_soft_iterations,
blur_amount,
erode_amount,
face_scale,
enable_laplacian_blend,
crop_top,
crop_bott,
crop_left,
crop_right,
*specifics,
):
global WORKSPACE
global OUTPUT_FILE
global PREVIEW
global USE_CUDA # Access global variables
global device
global PROVIDER
global FACE_ANALYSER, FACE_SWAPPER, FACE_ENHANCER, FACE_PARSER, NSFW_DETECTOR
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None
if USE_CUDA:
available_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in available_providers:
print("\n********** Running on CUDA **********\n")
PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
USE_CUDA = False
print("\n********** CUDA unavailable running on CPU **********\n")
PROVIDER = ["CPUExecutionProvider"]
else:
USE_CUDA = False
print("\n********** Running on CPU **********\n")
PROVIDER = ["CPUExecutionProvider"]
device = "cuda" if USE_CUDA else "cpu"
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
# Reset models to None to reload them with GPU
FACE_ANALYSER = None
FACE_SWAPPER = None
FACE_ENHANCER = None
FACE_PARSER = None
NSFW_DETECTOR = None
## ------------------------------ GUI UPDATE FUNC ------------------------------
def ui_before():
return (
gr.update(visible=True, value=PREVIEW),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(visible=False),
)
def ui_after():
return (
gr.update(visible=True, value=PREVIEW),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(visible=False),
)
def ui_after_vid():
return (
gr.update(visible=False),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(value=OUTPUT_FILE, visible=True),
)
start_time = time.time()
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60)
get_finsh_text = lambda start_time: f"βοΈ Completed in {int(total_exec_time(start_time)[0])} min {int(total_exec_time(start_time)[1])} sec."
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------
yield "### \n β Loading NSFW detector model...", *ui_before()
load_nsfw_detector_model()
yield "### \n β Loading face analyser model...", *ui_before()
load_face_analyser_model()
yield "### \n β Loading face swapper model...", *ui_before()
load_face_swapper_model()
if face_enhancer_name != "NONE":
if face_enhancer_name not in cv2_interpolations:
yield f"### \n β Loading {face_enhancer_name} model...", *ui_before()
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device)
else:
FACE_ENHANCER = None
if enable_face_parser:
yield "### \n β Loading face parsing model...", *ui_before()
load_face_parser_model()
includes = mask_regions_to_list(mask_includes)
specifics = list(specifics)
half = len(specifics) // 2
sources = specifics[:half]
specifics = specifics[half:]
if crop_top > crop_bott:
crop_top, crop_bott = crop_bott, crop_top
if crop_left > crop_right:
crop_left, crop_right = crop_right, crop_left
crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right)
def swap_process(image_sequence):
## ------------------------------ CONTENT CHECK ------------------------------
yield "### \n β Checking contents...", *ui_before()
nsfw = false
if nsfw:
message = "NSFW Content detected !!!"
yield f"### \n π {message}", *ui_before()
assert not nsfw, message
return False
EMPTY_CACHE()
## ------------------------------ ANALYSE FACE ------------------------------
yield "### \n β Analysing face data...", *ui_before()
if condition != "Specific Face":
source_data = source_path, age
else:
source_data = ((sources, specifics), distance)
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data(
FACE_ANALYSER,
image_sequence,
source_data,
swap_condition=condition,
detect_condition=DETECT_CONDITION,
scale=face_scale
)
## ------------------------------ SWAP FUNC ------------------------------
yield "### \n β Generating faces...", *ui_before()
preds = []
matrs = []
count = 0
global PREVIEW
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources):
preds.extend(batch_pred)
matrs.extend(batch_matr)
EMPTY_CACHE()
count += 1
if USE_CUDA:
image_grid = create_image_grid(batch_pred, size=128)
PREVIEW = image_grid[:, :, ::-1]
yield f"### \n β Generating face Batch {count}", *ui_before()
## ------------------------------ FACE ENHANCEMENT ------------------------------
generated_len = len(preds)
if face_enhancer_name != "NONE":
yield f"### \n β Upscaling faces with {face_enhancer_name}...", *ui_before()
for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"):
enhancer_model, enhancer_model_runner = FACE_ENHANCER
pred = enhancer_model_runner(pred, enhancer_model)
preds[idx] = cv2.resize(pred, (512,512))
EMPTY_CACHE()
## ------------------------------ FACE PARSING ------------------------------
if enable_face_parser:
yield "### \n β Face-parsing mask...", *ui_before()
masks = []
count = 0
for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)):
masks.append(batch_mask)
EMPTY_CACHE()
count += 1
if len(batch_mask) > 1:
image_grid = create_image_grid(batch_mask, size=128)
PREVIEW = image_grid[:, :, ::-1]
yield f"### \n β Face parsing Batch {count}", *ui_before()
masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks
else:
masks = [None] * generated_len
## ------------------------------ SPLIT LIST ------------------------------
split_preds = split_list_by_lengths(preds, num_faces_per_frame)
del preds
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame)
del matrs
split_masks = split_list_by_lengths(masks, num_faces_per_frame)
del masks
## ------------------------------ PASTE-BACK ------------------------------
yield "### \n β Pasting back...", *ui_before()
def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount):
whole_img_path = frame_img
whole_img = cv2.imread(whole_img_path)
blend_method = 'laplacian' if enable_laplacian_blend else 'linear'
for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]):
p = cv2.resize(p, (512,512))
mask = cv2.resize(mask, (512,512)) if mask is not None else None
m /= 0.25
whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount)
cv2.imwrite(whole_img_path, whole_img)
def concurrent_post_process(image_sequence, *args):
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
for idx, frame_img in enumerate(image_sequence):
future = executor.submit(post_process, idx, frame_img, *args)
futures.append(future)
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"):
result = future.result()
concurrent_post_process(
image_sequence,
split_preds,
split_matrs,
split_masks,
enable_laplacian_blend,
crop_mask,
blur_amount,
erode_amount
)
## ------------------------------ IMAGE ------------------------------
if input_type == "Image":
target = cv2.imread(image_path)
output_file = os.path.join(output_path, output_name + ".png")
cv2.imwrite(output_file, target)
for info_update in swap_process([output_file]):
yield info_update
OUTPUT_FILE = output_file
WORKSPACE = output_path
PREVIEW = cv2.imread(output_file)[:, :, ::-1]
yield get_finsh_text(start_time), *ui_after()
## ------------------------------ VIDEO ------------------------------
elif input_type == "Video":
temp_path = os.path.join(output_path, output_name, "sequence")
os.makedirs(temp_path, exist_ok=True)
yield "### \n β Extracting video frames...", *ui_before()
image_sequence = []
cap = cv2.VideoCapture(video_path)
curr_idx = 0
while True:
ret, frame = cap.read()
if not ret:break
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg")
cv2.imwrite(frame_path, frame)
image_sequence.append(frame_path)
curr_idx += 1
cap.release()
cv2.destroyAllWindows()
for info_update in swap_process(image_sequence):
yield info_update
yield "### \n β Merging sequence...", *ui_before()
output_video_path = os.path.join(output_path, output_name + ".mp4")
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path)
if os.path.exists(temp_path) and not keep_output_sequence:
yield "### \n β Removing temporary files...", *ui_before()
shutil.rmtree(temp_path)
WORKSPACE = output_path
OUTPUT_FILE = output_video_path
yield get_finsh_text(start_time), *ui_after_vid()
## ------------------------------ DIRECTORY ------------------------------
elif input_type == "Directory":
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
temp_path = os.path.join(output_path, output_name)
if os.path.exists(temp_path):
shutil.rmtree(temp_path)
os.mkdir(temp_path)
file_paths =[]
for file_path in glob.glob(os.path.join(directory_path, "*")):
if any(file_path.lower().endswith(ext) for ext in extensions):
img = cv2.imread(file_path)
new_file_path = os.path.join(temp_path, os.path.basename(file_path))
cv2.imwrite(new_file_path, img)
file_paths.append(new_file_path)
for info_update in swap_process(file_paths):
yield info_update
PREVIEW = cv2.imread(file_paths[-1])[:, :, ::-1]
WORKSPACE = temp_path
OUTPUT_FILE = file_paths[-1]
yield get_finsh_text(start_time), *ui_after()
## ------------------------------ STREAM ------------------------------
elif input_type == "Stream":
pass
## ------------------------------ GRADIO FUNC ------------------------------
def update_radio(value):
if value == "Image":
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
elif value == "Video":
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
)
elif value == "Directory":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
)
elif value == "Stream":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
)
def swap_option_changed(value):
if value.startswith("Age"):
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
)
elif value == "Specific Face":
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
)
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def video_changed(video_path):
sliders_update = gr.Slider.update
button_update = gr.Button.update
number_update = gr.Number.update
if video_path is None:
return (
sliders_update(minimum=0, maximum=0, value=0),
sliders_update(minimum=1, maximum=1, value=1),
number_update(value=1),
)
try:
clip = VideoFileClip(video_path)
fps = clip.fps
total_frames = clip.reader.nframes
clip.close()
return (
sliders_update(minimum=0, maximum=total_frames, value=0, interactive=True),
sliders_update(
minimum=0, maximum=total_frames, value=total_frames, interactive=True
),
number_update(value=fps),
)
except:
return (
sliders_update(value=0),
sliders_update(value=0),
number_update(value=1),
)
def analyse_settings_changed(detect_condition, detection_size, detection_threshold):
yield "### \n β Applying new values..."
global FACE_ANALYSER
global DETECT_CONDITION
DETECT_CONDITION = detect_condition
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER)
FACE_ANALYSER.prepare(
ctx_id=0,
det_size=(int(detection_size), int(detection_size)),
det_thresh=float(detection_threshold),
)
yield f"### \n βοΈ Applied detect condition:{detect_condition}, detection size: {detection_size}, detection threshold: {detection_threshold}"
def stop_running():
global STREAMER
if hasattr(STREAMER, "stop"):
STREAMER.stop()
STREAMER = None
return "Cancelled"
def slider_changed(show_frame, video_path, frame_index):
if not show_frame:
return None, None
if video_path is None:
return None, None
clip = VideoFileClip(video_path)
frame = clip.get_frame(frame_index / clip.fps)
frame_array = np.array(frame)
clip.close()
return gr.Image.update(value=frame_array, visible=True), gr.Video.update(
visible=False
)
def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame):
yield video_path, f"### \n β Trimming video frame {start_frame} to {stop_frame}..."
try:
output_path = os.path.join(output_path, output_name)
trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame)
yield trimmed_video, "### \n βοΈ Video trimmed and reloaded."
except Exception as e:
print(e)
yield video_path, "### \n β Video trimming failed. See console for more info."
## ------------------------------ GRADIO GUI ------------------------------
css = """
footer{display:none !important}
"""
with gr.Blocks(css=css) as interface:
gr.Markdown("# πΏ Swap Mukham")
gr.Markdown("### Face swap app based on insightface inswapper.")
with gr.Row():
with gr.Row():
with gr.Column(scale=0.4):
with gr.Tab("π Swap Condition"):
swap_option = gr.Dropdown(
swap_options_list,
info="Choose which face or faces in the target image to swap.",
multiselect=False,
show_label=False,
value=swap_options_list[0],
interactive=True,
)
age = gr.Number(
value=25, label="Value", interactive=True, visible=False
)
with gr.Tab("ποΈ Detection Settings"):
detect_condition_dropdown = gr.Dropdown(
detect_conditions,
label="Condition",
value=DETECT_CONDITION,
interactive=True,
info="This condition is only used when multiple faces are detected on source or specific image.",
)
detection_size = gr.Number(
label="Detection Size", value=DETECT_SIZE, interactive=True
)
detection_threshold = gr.Number(
label="Detection Threshold",
value=DETECT_THRESH,
interactive=True,
)
apply_detection_settings = gr.Button("Apply settings")
with gr.Tab("π€ Output Settings"):
output_directory = gr.Text(
label="Output Directory",
value=DEF_OUTPUT_PATH,
interactive=True,
)
output_name = gr.Text(
label="Output Name", value="Result", interactive=True
)
keep_output_sequence = gr.Checkbox(
label="Keep output sequence", value=False, interactive=True
)
with gr.Tab("πͺ Other Settings"):
face_scale = gr.Slider(
label="Face Scale",
minimum=0,
maximum=2,
value=1,
interactive=True,
)
face_enhancer_name = gr.Dropdown(
FACE_ENHANCER_LIST, label="Face Enhancer", value="NONE", multiselect=False, interactive=True
)
with gr.Accordion("Advanced Mask", open=False):
enable_face_parser_mask = gr.Checkbox(
label="Enable Face Parsing",
value=False,
interactive=True,
)
mask_include = gr.Dropdown(
mask_regions.keys(),
value=MASK_INCLUDE,
multiselect=True,
label="Include",
interactive=True,
)
mask_soft_kernel = gr.Number(
label="Soft Erode Kernel",
value=MASK_SOFT_KERNEL,
minimum=3,
interactive=True,
visible = False
)
mask_soft_iterations = gr.Number(
label="Soft Erode Iterations",
value=MASK_SOFT_ITERATIONS,
minimum=0,
interactive=True,
)
with gr.Accordion("Crop Mask", open=False):
crop_top = gr.Slider(label="Top", minimum=0, maximum=511, value=0, step=1, interactive=True)
crop_bott = gr.Slider(label="Bottom", minimum=0, maximum=511, value=511, step=1, interactive=True)
crop_left = gr.Slider(label="Left", minimum=0, maximum=511, value=0, step=1, interactive=True)
crop_right = gr.Slider(label="Right", minimum=0, maximum=511, value=511, step=1, interactive=True)
erode_amount = gr.Slider(
label="Mask Erode",
minimum=0,
maximum=1,
value=MASK_ERODE_AMOUNT,
step=0.05,
interactive=True,
)
blur_amount = gr.Slider(
label="Mask Blur",
minimum=0,
maximum=1,
value=MASK_BLUR_AMOUNT,
step=0.05,
interactive=True,
)
enable_laplacian_blend = gr.Checkbox(
label="Laplacian Blending",
value=True,
interactive=True,
)
source_image_input = gr.Image(
label="Source face", type="filepath", interactive=True
)
with gr.Group(visible=False) as specific_face:
for i in range(NUM_OF_SRC_SPECIFIC):
idx = i + 1
code = "\n"
code += f"with gr.Tab(label='({idx})'):"
code += "\n\twith gr.Row():"
code += f"\n\t\tsrc{idx} = gr.Image(interactive=True, type='numpy', label='Source Face {idx}')"
code += f"\n\t\ttrg{idx} = gr.Image(interactive=True, type='numpy', label='Specific Face {idx}')"
exec(code)
distance_slider = gr.Slider(
minimum=0,
maximum=2,
value=0.6,
interactive=True,
label="Distance",
info="Lower distance is more similar and higher distance is less similar to the target face.",
)
with gr.Group():
input_type = gr.Radio(
["Image", "Video"],
label="Target Type",
value="Image",
)
with gr.Group(visible=True) as input_image_group:
image_input = gr.Image(
label="Target Image", interactive=True, type="filepath"
)
with gr.Group(visible=False) as input_video_group:
vid_widget = gr.Video if USE_COLAB else gr.Text
video_input = gr.Video(
label="Target Video", interactive=True
)
with gr.Accordion("βοΈ Trim video", open=False):
with gr.Column():
with gr.Row():
set_slider_range_btn = gr.Button(
"Set frame range", interactive=True
)
show_trim_preview_btn = gr.Checkbox(
label="Show frame when slider change",
value=True,
interactive=True,
)
video_fps = gr.Number(
value=30,
interactive=False,
label="Fps",
visible=False,
)
start_frame = gr.Slider(
minimum=0,
maximum=1,
value=0,
step=1,
interactive=True,
label="Start Frame",
info="",
)
end_frame = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=1,
interactive=True,
label="End Frame",
info="",
)
trim_and_reload_btn = gr.Button(
"Trim and Reload", interactive=True
)
with gr.Group(visible=False) as input_directory_group:
direc_input = gr.Text(label="Path", interactive=True)
with gr.Column(scale=0.6):
info = gr.Markdown(value="...")
with gr.Row():
swap_button = gr.Button("β¨ Swap", variant="primary")
cancel_button = gr.Button("β Cancel")
preview_image = gr.Image(label="Output", interactive=False)
preview_video = gr.Video(
label="Output", interactive=False, visible=False
)
with gr.Row():
output_directory_button = gr.Button(
"π", interactive=False, visible=False
)
output_video_button = gr.Button(
"π¬", interactive=False, visible=False
)
with gr.Group():
with gr.Row():
gr.Markdown(
"### [π€ Sponsor](https://github.com/sponsors/harisreedhar)"
)
gr.Markdown(
"### [π¨βπ» Source code](https://github.com/harisreedhar/Swap-Mukham)"
)
gr.Markdown(
"### [β οΈ Disclaimer](https://github.com/harisreedhar/Swap-Mukham#disclaimer)"
)
gr.Markdown(
"### [π Run in Colab](https://colab.research.google.com/github/harisreedhar/Swap-Mukham/blob/main/swap_mukham_colab.ipynb)"
)
gr.Markdown(
"### [π€ Acknowledgements](https://github.com/harisreedhar/Swap-Mukham#acknowledgements)"
)
## ------------------------------ GRADIO EVENTS ------------------------------
set_slider_range_event = set_slider_range_btn.click(
video_changed,
inputs=[video_input],
outputs=[start_frame, end_frame, video_fps],
)
trim_and_reload_event = trim_and_reload_btn.click(
fn=trim_and_reload,
inputs=[video_input, output_directory, output_name, start_frame, end_frame],
outputs=[video_input, info],
)
start_frame_event = start_frame.release(
fn=slider_changed,
inputs=[show_trim_preview_btn, video_input, start_frame],
outputs=[preview_image, preview_video],
show_progress=True,
)
end_frame_event = end_frame.release(
fn=slider_changed,
inputs=[show_trim_preview_btn, video_input, end_frame],
outputs=[preview_image, preview_video],
show_progress=True,
)
input_type.change(
update_radio,
inputs=[input_type],
outputs=[input_image_group, input_video_group, input_directory_group],
)
swap_option.change(
swap_option_changed,
inputs=[swap_option],
outputs=[age, specific_face, source_image_input],
)
apply_detection_settings.click(
analyse_settings_changed,
inputs=[detect_condition_dropdown, detection_size, detection_threshold],
outputs=[info],
)
src_specific_inputs = []
gen_variable_txt = ",".join(
[f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
+ [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
)
exec(f"src_specific_inputs = ({gen_variable_txt})")
swap_inputs = [
input_type,
image_input,
video_input,
direc_input,
source_image_input,
output_directory,
output_name,
keep_output_sequence,
swap_option,
age,
distance_slider,
face_enhancer_name,
enable_face_parser_mask,
mask_include,
mask_soft_kernel,
mask_soft_iterations,
blur_amount,
erode_amount,
face_scale,
enable_laplacian_blend,
crop_top,
crop_bott,
crop_left,
crop_right,
*src_specific_inputs,
]
swap_outputs = [
info,
preview_image,
output_directory_button,
output_video_button,
preview_video,
]
swap_event = swap_button.click(
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True
)
cancel_button.click(
fn=stop_running,
inputs=None,
outputs=[info],
cancels=[
swap_event,
trim_and_reload_event,
set_slider_range_event,
start_frame_event,
end_frame_event,
],
show_progress=True,
)
output_directory_button.click(
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None
)
output_video_button.click(
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None
)
if __name__ == "__main__":
if USE_COLAB:
print("Running in colab mode")
interface.queue()
interface.launch()
|