File size: 10,143 Bytes
41aed49
 
 
b248ba6
 
 
 
 
 
 
 
37ab146
b248ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41aed49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56c1c60
 
 
 
 
 
41aed49
 
 
 
 
 
 
 
 
 
 
 
56c1c60
 
 
 
 
 
41aed49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from pprint import pprint
import argparse
from itertools import chain, tee
from argparse import Namespace

def get_default_args():
    """Returns the default arguments as a Namespace object."""
    default_arg_dict = {
        'run_gradio': True,
        'run_extended': True,
        'demo_public': False,
        'model_name_or_path': 'bigscience/bloom-560m', #'google/gemma-2-2b-it', #'meta-llama/Meta-Llama-3-8B',
        'load_fp16': False,
        'prompt_max_length': None,
        'max_new_tokens': 200,
        'generation_seed': 123,
        'use_sampling': True,
        'n_beams': 1,
        'sampling_temp': 0.7,
        'use_gpu': False,
        'seeding_scheme': 'simple_1',
        'gamma': 0.25,
        'delta': 2.0,
        'normalizers': '',
        'skip_repeated_bigrams': False,
        'ignore_repeated_ngrams': False,
        'detection_z_threshold': 4.0,
        'select_green_tokens': True,
        'skip_model_load': False,
        'seed_separately': True,
    }
    
    args = Namespace()
    args.__dict__.update(default_arg_dict)
    return args

def process_args(args):
    """Process and normalize command-line arguments."""
    args.normalizers = args.normalizers.split(",") if args.normalizers else []
    print(args)
    return args

def get_default_prompt():
    """Return the default input text for generation."""
    return (
        "Manchester is a major city in the northwest of England with a rich industrial heritage. The city played a central role in the Industrial Revolution and is known for its influence on industry, music, and culture.[1] One of Manchester's most iconic landmarks is the Manchester Town Hall, a stunning example of Victorian Gothic architecture.[2] The city is also home to the University of Manchester, one of the UK's leading research institutions, and the Manchester Museum, which houses extensive collections in the fields of archaeology, anthropology, and natural history.[3] Manchester has a vibrant cultural scene, having produced several influential bands, including The Smiths, Joy Division, and Oasis.[4] The Northern Quarter is known for its independent shops, cafes, bars, street art, and music venues.[5]"
    )

def display_prompt(prompt, term_width=80):
    """Display the prompt text."""
    print("#" * term_width)
    print("Prompt:")
    print(prompt)

def display_results(output, detection_result, args, term_width=80, with_watermark=True):
    """Display the generated output and detection results."""
    watermark_status = "with watermark" if with_watermark else "without watermark"
    print("#" * term_width)
    print(f"Output {watermark_status}:")
    print(output)
    print("-" * term_width)
    print(f"Detection result @ {args.detection_z_threshold}:")
    pprint(detection_result)
    print("-" * term_width)

def str2bool(v):
    """Util function for user friendly boolean flag args"""
    if isinstance(v, bool):
        return v
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

def parse_args():
    """Command line argument specification"""

    parser = argparse.ArgumentParser(description="A minimum working example of applying the watermark to any LLM that supports the huggingface 🤗 `generate` API")

    parser.add_argument(
        "--run_gradio",
        type=str2bool,
        default=True,
        help="Whether to launch as a gradio demo. Set to False if not installed and want to just run the stdout version.",
    )
    parser.add_argument(
        "--demo_public",
        type=str2bool,
        default=False,
        help="Whether to expose the gradio demo to the internet.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        default="bigscience/bloom-560m",
        help="Main model, path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--prompt_max_length",
        type=int,
        default=None,
        help="Truncation length for prompt, overrides model config's max length field.",
    )
    parser.add_argument(
        "--max_new_tokens",
        type=int,
        default=200,
        help="Maximmum number of new tokens to generate.",
    )
    parser.add_argument(
        "--generation_seed",
        type=int,
        default=123,
        help="Seed for setting the torch global rng prior to generation.",
    )
    parser.add_argument(
        "--use_sampling",
        type=str2bool,
        default=True,
        help="Whether to generate using multinomial sampling.",
    )
    parser.add_argument(
        "--sampling_temp",
        type=float,
        default=0.7,
        help="Sampling temperature to use when generating using multinomial sampling.",
    )
    parser.add_argument(
        "--n_beams",
        type=int,
        default=1,
        help="Number of beams to use for beam search. 1 is normal greedy decoding",
    )
    parser.add_argument(
        "--use_gpu",
        type=str2bool,
        default=True,
        help="Whether to run inference and watermark hashing/seeding/permutation on gpu.",
    )
    parser.add_argument(
        "--seeding_scheme",
        type=str,
        default="simple_1",
        help="Seeding scheme to use to generate the greenlists at each generation and verification step.",
    )
    parser.add_argument(
        "--gamma",
        type=float,
        default=0.25,
        help="The fraction of the vocabulary to partition into the greenlist at each generation and verification step.",
    )
    parser.add_argument(
        "--delta",
        type=float,
        default=2.0,
        help="The amount/bias to add to each of the greenlist token logits before each token sampling step.",
    )
    parser.add_argument(
        "--normalizers",
        type=str,
        default="",
        help="Single or comma separated list of the preprocessors/normalizer names to use when performing watermark detection.",
    )
    parser.add_argument(
        "--skip_repeated_bigrams",
        type=str2bool,
        default=False,
        help="Whether to use the detection method that only counts each unqiue bigram once as either a green or red hit.",
    )
    parser.add_argument(
        "--detection_z_threshold",
        type=float,
        default=4.0,
        help="The test statistic threshold for the detection hypothesis test.",
    )
    parser.add_argument(
        "--select_green_tokens",
        type=str2bool,
        default=True,
        help="How to treat the permuation when selecting the greenlist tokens at each step. Legacy is (False) to pick the complement/reds first.",
    )
    parser.add_argument(
        "--skip_model_load",
        type=str2bool,
        default=False,
        help="Skip the model loading to debug the interface.",
    )
    parser.add_argument(
        "--ignore_repeated_ngrams",
        type=str2bool,
        default=False,
        help="Ignore repeated ngrams.",
    )
    parser.add_argument(
        "--seed_separately",
        type=str2bool,
        default=True,
        help="Whether to call the torch seed function before both the unwatermarked and watermarked generate calls.",
    )
    parser.add_argument(
        "--load_fp16",
        type=str2bool,
        default=False,
        help="Whether to run model in float16 precsion.",
    )
    parser.add_argument(
        "--run_extended",
        type=str2bool,
        default=False,
        help="Whether to run basic or advance algorithm.",
    )
    args = parser.parse_args()
    return args

def format_names(s):
    """Format names for the gradio demo interface"""
    s=s.replace("num_tokens_scored","Tokens Counted (T)")
    s=s.replace("num_green_tokens","# Tokens in Greenlist")
    s=s.replace("green_fraction","Fraction of T in Greenlist")
    s=s.replace("z_score","z-score")
    s=s.replace("p_value","p value")
    s=s.replace("prediction","Prediction")
    s=s.replace("confidence","Confidence")
    return s

def list_format_scores(score_dict, detection_threshold):
    """Format the detection metrics into a gradio dataframe input format"""
    lst_2d = []
    # lst_2d.append(["z-score threshold", f"{detection_threshold}"])
    for k,v in score_dict.items():
        if k=='green_fraction': 
            lst_2d.append([format_names(k), f"{v:.1%}"])
        elif k=='confidence': 
            lst_2d.append([format_names(k), f"{v:.3%}"])
        elif isinstance(v, float): 
            lst_2d.append([format_names(k), f"{v:.3g}"])
        elif isinstance(v, bool):
            lst_2d.append([format_names(k), ("Watermarked" if v else "Human/Unwatermarked")])
        else: 
            lst_2d.append([format_names(k), f"{v}"])
    if "confidence" in score_dict:
        lst_2d.insert(-2,["z-score Threshold", f"{detection_threshold}"])
    else:
        lst_2d.insert(-1,["z-score Threshold", f"{detection_threshold}"])
    return lst_2d


##########################################################################
# Ngram iteration from nltk, extracted to remove the dependency
# Natural Language Toolkit: Utility functions
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Bird <stevenbird1@gmail.com>
#         Eric Kafe <kafe.eric@gmail.com> (acyclic closures)
# URL: <https://www.nltk.org/>
# For license information, see https://github.com/nltk/nltk/blob/develop/LICENSE.txt
##########################################################################


def ngrams(sequence, n, pad_left=False, pad_right=False, pad_symbol=None):
    sequence = iter(sequence)
    if pad_left:
        sequence = chain((pad_symbol,) * (n - 1), sequence)
    if pad_right:
        sequence = chain(sequence, (pad_symbol,) * (n - 1))
    iterables = tee(sequence, n)

    for i, sub_iterable in enumerate(iterables):  # For each window,
        for _ in range(i):  # iterate through every order of ngrams
            next(sub_iterable, None)  # generate the ngrams within the window.
    return zip(*iterables)  # Unpack and flattens the iterables.