Spaces:
Runtime error
Runtime error
File size: 918 Bytes
6ea0d31 cfa72c4 fa85150 cbce115 79151c9 416ff02 e8eb5a0 7c6be12 e8eb5a0 27b2e81 79151c9 27b2e81 fa85150 27b2e81 874e9f3 fa85150 79c71e7 fa85150 cbce115 1e56eb5 4ac237d b5fb62f 27b2e81 c4d440c 27b2e81 7c6be12 c4d440c 0901515 fa85150 79151c9 0901515 3ffc046 27b2e81 416ff02 27b2e81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
from youtube_video import download_youtube_video
import requests
from huggingface_hub import InferenceClient
import gradio as gr
#def my_inference_function(name):
# return "Heldddddddddddddddlo " + name + "!"
data1=0
data2=0
#data = 'https://www.youtube.com/watch?v=ETDEuH3YL7I' #'https://www.youtube.com/watch?v=bJ5FDtgOwjo'
def my_inference_function(data):
data2=data
return "serverside says hi " + data2 + "!"
def app(video_link):
video_path = download_youtube_video(video_link)
return video_path
interface = gr.Interface(
fn=app,
inputs=gr.Textbox(data2, label="Enter YouTube link"),"text",
outputs=gr.Video(label = "video_path"),
examples=[
["Jill"],
["Sam"]
],
title="_ _",
description="_ _ _",
article="_"
)
interface.launch(debug=True)
#gr.Interface.queue(api_open=True)
#gradio_interface.launch()
#interface.launch(debug=True)
|