import webdataset as wds
import glob
import os
from tqdm import tqdm
import orjson as json
import itertools
from PIL import Image
import numpy as np
from typing import List

class Generator():
    def __init__(self, dataset_name):
        self.dataset_name = dataset_name
        self.is_end = False

class CC3MGenerator(Generator):
    def __init__(self, root: str, dataset_name="cc3m"):
        super().__init__(dataset_name=dataset_name)
        self.tars = glob.glob(os.path.join(root, "cc3m_*", "*.tar"))

    def __len__(self):
        return 3000000

    def __iter__(self):
        for tar in self.tars:
            dataset = wds.WebDataset(tar).decode("pilrgb").to_tuple("jpg;png;jpeg", "txt")
            for data in dataset:
                yield [self.dataset_name] + list(data)
        self.is_end = True

class CC12MGenerator(CC3MGenerator):
    def __init__(self, root: str):
        super().__init__(root, "cc12m")
        self.tars = glob.glob(os.path.join(root, "*.tar"))

    def __len__(self):
        return 12000000

class COCOGenerator(Generator):
    def __init__(self, anno: str, image_dir):
        super().__init__(dataset_name="coco")
        data = json.loads(open(anno).read())
        self.annotations = data["annotations"]
        self.image_id_to_filename = {}
        for image in data["images"]:
            file_name = image["file_name"]
            image_id = image["id"]
            self.image_id_to_filename[image_id] = os.path.join(image_dir, file_name)

    def __len__(self):
        return len(self.annotations)

    def __iter__(self):
        for anno in self.annotations:
            image_id = anno["image_id"]
            caption = anno["caption"]
            try:
                image = Image.open(self.image_id_to_filename[image_id])
            except:
                continue
            yield [self.dataset_name, image, caption]
        self.is_end = True


class KarpathyCOCOGenerator(Generator):
    def __init__(self, anno="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/tools/coco_karpathy_train.json", image_dir="/gpfs/u/home/LMCG/LMCGljnn/scratch/.cache/lavis/coco/images"):
        super().__init__(dataset_name="coco")
        data = json.loads(open(anno).read())
        self.annotations = data
        self.image_id_to_filename = {}
        for d in data:
            self.image_id_to_filename[d["image_id"]] = os.path.join(image_dir, d["image"])

    def __len__(self):
        return len(self.annotations)

    def __iter__(self):
        for anno in self.annotations:
            image_id = anno["image_id"]
            caption = anno["caption"]
            try:
                image = Image.open(self.image_id_to_filename[image_id])
            except:
                print(self.image_id_to_filename[image_id])
            yield [self.dataset_name, image, caption]
        self.is_end = True


class VisualGenomeGenerator(Generator):
    def __init__(self, root: str):
        super().__init__(dataset_name="vg")
        data = json.loads(open(os.path.join(root, "region_descriptions.json")).read())
        image_data = json.loads(open(os.path.join(root, "image_data.json")).read())
        self.image_id_to_filename = {}
        self.image_id_to_wh = {}
        for image in image_data:
            image_id = image["image_id"]
            subfolder, filename = image['url'].split("/")[-2:]
            self.image_id_to_filename[image_id] = os.path.join(root, subfolder, filename)
            self.image_id_to_wh[image_id] = (image["width"], image["height"])
        self.regions = []
        total = 0
        total_image = 0
        used_image = 0
        for xx in data:
            total_image += 1
            flag = False
            for region in xx['regions']:
                total += 1
                region_w = int(region["width"])
                region_h = int(region["height"])
                image_w = self.image_id_to_wh[region["image_id"]][0]
                image_h = self.image_id_to_wh[region["image_id"]][1]
                if region_w * region_h < (image_w * image_h) * 0.2:
                    continue
                self.regions.append(region)
                flag = True
            if flag:
                used_image += 1
        print("valid region", len(self.regions), total, len(self.regions) / total)
        print("valid image", used_image, total_image, used_image / total_image)

    def __len__(self):
        return len(self.regions)

    def __iter__(self):
        for region in self.regions:
            image_id = region["image_id"]
            phrase = region["phrase"]
            try:
                image = Image.open(self.image_id_to_filename[image_id])
            except:
                continue
            yield [self.dataset_name, image, phrase]
        self.is_end = True

class ShuffleGenerator():
    def __init__(self, generators: List[Generator], p: List[int]):
        self.generators = generators
        self.p = list(np.array(p) / sum(p))
        self.ids = list(range(len(self.generators)))
        print("rebalance", self.ids, self.p)

    def __len__(self):
        return sum([len(g) for g in self.generators])

    def __iter__(self):
        while True:
            if len(self.ids) == 0:
                break
            id = np.random.choice(self.ids, p=self.p)
            gen = self.generators[id]
            if gen.is_end:
                print(gen.dataset_name, "is all done")
                del self.ids[id]
                del self.p[id]
                self.p = list(np.array(self.p) / sum(p))
                print("rebalance", self.ids, self.p)
            else:
                return iter(gen)


if __name__ == "__main__":
    OUT_DIR = "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/vg_withBox_wds"
    os.makedirs(OUT_DIR, exist_ok=True)
    # cc3m_generator = CC3MGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/cc3m")
    # cc12m_generator = CC12MGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/cc12m/tars")
    # coco_generator = KarpathyCOCOGenerator()
    visual_genome_generator = VisualGenomeGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch/datasets/raw/vg")
    # generators = [cc3m_generator, cc12m_generator, coco_generator, visual_genome_generator]
    # p = [len(generator) for generator in generators]
    # dataset = ShuffleGenerator(generators, p)

    with wds.ShardWriter(os.path.join(OUT_DIR, "%05d.tar"), maxcount=8500) as sink:
        sink.verbose = False
        for i, data in enumerate(tqdm(visual_genome_generator)):
            dataset_name, image, caption = data
            sink.write({"__key__": f"{dataset_name}_{i}_containBox", "jpg": image, "txt": caption})