File size: 24,357 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import glob
import os
import re

import black
from doc_builder.style_doc import style_docstrings_in_code

from transformers.utils import direct_transformers_import


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
TRANSFORMERS_PATH = "src/transformers"
PATH_TO_DOCS = "docs/source/en"
REPO_PATH = "."

# Mapping for files that are full copies of others (keys are copies, values the file to keep them up to data with)
FULL_COPIES = {
    "examples/tensorflow/question-answering/utils_qa.py": "examples/pytorch/question-answering/utils_qa.py",
    "examples/flax/question-answering/utils_qa.py": "examples/pytorch/question-answering/utils_qa.py",
}


LOCALIZED_READMES = {
    # If the introduction or the conclusion of the list change, the prompts may need to be updated.
    "README.md": {
        "start_prompt": "🤗 Transformers currently provides the following architectures",
        "end_prompt": "1. Want to contribute a new model?",
        "format_model_list": (
            "**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by"
            " {paper_authors}.{supplements}"
        ),
    },
    "README_zh-hans.md": {
        "start_prompt": "🤗 Transformers 目前支持如下的架构",
        "end_prompt": "1. 想要贡献新的模型?",
        "format_model_list": (
            "**[{title}]({model_link})** (来自 {paper_affiliations}) 伴随论文 {paper_title_link} 由 {paper_authors}"
            " 发布。{supplements}"
        ),
    },
    "README_zh-hant.md": {
        "start_prompt": "🤗 Transformers 目前支援以下的架構",
        "end_prompt": "1. 想要貢獻新的模型?",
        "format_model_list": (
            "**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by"
            " {paper_authors}.{supplements}"
        ),
    },
    "README_ko.md": {
        "start_prompt": "🤗 Transformers는 다음 모델들을 제공합니다",
        "end_prompt": "1. 새로운 모델을 올리고 싶나요?",
        "format_model_list": (
            "**[{title}]({model_link})** ({paper_affiliations} 에서 제공)은 {paper_authors}.{supplements}의"
            " {paper_title_link}논문과 함께 발표했습니다."
        ),
    },
    "README_es.md": {
        "start_prompt": "🤗 Transformers actualmente proporciona las siguientes arquitecturas",
        "end_prompt": "1. ¿Quieres aportar un nuevo modelo?",
        "format_model_list": (
            "**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by"
            " {paper_authors}.{supplements}"
        ),
    },
    "README_ja.md": {
        "start_prompt": "🤗Transformersは現在、以下のアーキテクチャを提供しています",
        "end_prompt": "1. 新しいモデルを投稿したいですか?",
        "format_model_list": (
            "**[{title}]({model_link})** ({paper_affiliations} から) {paper_authors}.{supplements} から公開された研究論文"
            " {paper_title_link}"
        ),
    },
    "README_hd.md": {
        "start_prompt": "🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं",
        "end_prompt": "1. एक नए मॉडल में योगदान देना चाहते हैं?",
        "format_model_list": (
            "**[{title}]({model_link})** ({paper_affiliations} से) {paper_authors}.{supplements} द्वारा"
            "अनुसंधान पत्र {paper_title_link} के साथ जारी किया गया"
        ),
    },
}


# This is to make sure the transformers module imported is the one in the repo.
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)


def _should_continue(line, indent):
    return line.startswith(indent) or len(line) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$", line) is not None


def find_code_in_transformers(object_name):
    """Find and return the code source code of `object_name`."""
    parts = object_name.split(".")
    i = 0

    # First let's find the module where our object lives.
    module = parts[i]
    while i < len(parts) and not os.path.isfile(os.path.join(TRANSFORMERS_PATH, f"{module}.py")):
        i += 1
        if i < len(parts):
            module = os.path.join(module, parts[i])
    if i >= len(parts):
        raise ValueError(
            f"`object_name` should begin with the name of a module of transformers but got {object_name}."
        )

    with open(os.path.join(TRANSFORMERS_PATH, f"{module}.py"), "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()

    # Now let's find the class / func in the code!
    indent = ""
    line_index = 0
    for name in parts[i + 1 :]:
        while (
            line_index < len(lines) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)", lines[line_index]) is None
        ):
            line_index += 1
        indent += "    "
        line_index += 1

    if line_index >= len(lines):
        raise ValueError(f" {object_name} does not match any function or class in {module}.")

    # We found the beginning of the class / func, now let's find the end (when the indent diminishes).
    start_index = line_index
    while line_index < len(lines) and _should_continue(lines[line_index], indent):
        line_index += 1
    # Clean up empty lines at the end (if any).
    while len(lines[line_index - 1]) <= 1:
        line_index -= 1

    code_lines = lines[start_index:line_index]
    return "".join(code_lines)


_re_copy_warning = re.compile(r"^(\s*)#\s*Copied from\s+transformers\.(\S+\.\S+)\s*($|\S.*$)")
_re_replace_pattern = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)")
_re_fill_pattern = re.compile(r"<FILL\s+[^>]*>")


def get_indent(code):
    lines = code.split("\n")
    idx = 0
    while idx < len(lines) and len(lines[idx]) == 0:
        idx += 1
    if idx < len(lines):
        return re.search(r"^(\s*)\S", lines[idx]).groups()[0]
    return ""


def blackify(code):
    """
    Applies the black part of our `make style` command to `code`.
    """
    has_indent = len(get_indent(code)) > 0
    if has_indent:
        code = f"class Bla:\n{code}"
    mode = black.Mode(target_versions={black.TargetVersion.PY37}, line_length=119)
    result = black.format_str(code, mode=mode)
    result, _ = style_docstrings_in_code(result)
    return result[len("class Bla:\n") :] if has_indent else result


def is_copy_consistent(filename, overwrite=False):
    """
    Check if the code commented as a copy in `filename` matches the original.

    Return the differences or overwrites the content depending on `overwrite`.
    """
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()
    diffs = []
    line_index = 0
    # Not a for loop cause `lines` is going to change (if `overwrite=True`).
    while line_index < len(lines):
        search = _re_copy_warning.search(lines[line_index])
        if search is None:
            line_index += 1
            continue

        # There is some copied code here, let's retrieve the original.
        indent, object_name, replace_pattern = search.groups()
        theoretical_code = find_code_in_transformers(object_name)
        theoretical_indent = get_indent(theoretical_code)

        start_index = line_index + 1 if indent == theoretical_indent else line_index + 2
        indent = theoretical_indent
        line_index = start_index

        # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
        should_continue = True
        while line_index < len(lines) and should_continue:
            line_index += 1
            if line_index >= len(lines):
                break
            line = lines[line_index]
            should_continue = _should_continue(line, indent) and re.search(f"^{indent}# End copy", line) is None
        # Clean up empty lines at the end (if any).
        while len(lines[line_index - 1]) <= 1:
            line_index -= 1

        observed_code_lines = lines[start_index:line_index]
        observed_code = "".join(observed_code_lines)

        # Before comparing, use the `replace_pattern` on the original code.
        if len(replace_pattern) > 0:
            patterns = replace_pattern.replace("with", "").split(",")
            patterns = [_re_replace_pattern.search(p) for p in patterns]
            for pattern in patterns:
                if pattern is None:
                    continue
                obj1, obj2, option = pattern.groups()
                theoretical_code = re.sub(obj1, obj2, theoretical_code)
                if option.strip() == "all-casing":
                    theoretical_code = re.sub(obj1.lower(), obj2.lower(), theoretical_code)
                    theoretical_code = re.sub(obj1.upper(), obj2.upper(), theoretical_code)

            # Blackify after replacement. To be able to do that, we need the header (class or function definition)
            # from the previous line
            theoretical_code = blackify(lines[start_index - 1] + theoretical_code)
            theoretical_code = theoretical_code[len(lines[start_index - 1]) :]

        # Test for a diff and act accordingly.
        if observed_code != theoretical_code:
            diff_index = start_index + 1
            for observed_line, theoretical_line in zip(observed_code.split("\n"), theoretical_code.split("\n")):
                if observed_line != theoretical_line:
                    break
                diff_index += 1
            diffs.append([object_name, diff_index])
            if overwrite:
                lines = lines[:start_index] + [theoretical_code] + lines[line_index:]
                line_index = start_index + 1

    if overwrite and len(diffs) > 0:
        # Warn the user a file has been modified.
        print(f"Detected changes, rewriting {filename}.")
        with open(filename, "w", encoding="utf-8", newline="\n") as f:
            f.writelines(lines)
    return diffs


def check_copies(overwrite: bool = False):
    all_files = glob.glob(os.path.join(TRANSFORMERS_PATH, "**/*.py"), recursive=True)
    diffs = []
    for filename in all_files:
        new_diffs = is_copy_consistent(filename, overwrite)
        diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs]
    if not overwrite and len(diffs) > 0:
        diff = "\n".join(diffs)
        raise Exception(
            "Found the following copy inconsistencies:\n"
            + diff
            + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them."
        )
    check_model_list_copy(overwrite=overwrite)


def check_full_copies(overwrite: bool = False):
    diffs = []
    for target, source in FULL_COPIES.items():
        with open(source, "r", encoding="utf-8") as f:
            source_code = f.read()
        with open(target, "r", encoding="utf-8") as f:
            target_code = f.read()
        if source_code != target_code:
            if overwrite:
                with open(target, "w", encoding="utf-8") as f:
                    print(f"Replacing the content of {target} by the one of {source}.")
                    f.write(source_code)
            else:
                diffs.append(f"- {target}: copy does not match {source}.")

    if not overwrite and len(diffs) > 0:
        diff = "\n".join(diffs)
        raise Exception(
            "Found the following copy inconsistencies:\n"
            + diff
            + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them."
        )


def get_model_list(filename, start_prompt, end_prompt):
    """Extracts the model list from the README."""
    with open(os.path.join(REPO_PATH, filename), "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()
    # Find the start of the list.
    start_index = 0
    while not lines[start_index].startswith(start_prompt):
        start_index += 1
    start_index += 1

    result = []
    current_line = ""
    end_index = start_index

    while not lines[end_index].startswith(end_prompt):
        if lines[end_index].startswith("1."):
            if len(current_line) > 1:
                result.append(current_line)
            current_line = lines[end_index]
        elif len(lines[end_index]) > 1:
            current_line = f"{current_line[:-1]} {lines[end_index].lstrip()}"
        end_index += 1
    if len(current_line) > 1:
        result.append(current_line)

    return "".join(result)


def convert_to_localized_md(model_list, localized_model_list, format_str):
    """Convert `model_list` to each localized README."""

    def _rep(match):
        title, model_link, paper_affiliations, paper_title_link, paper_authors, supplements = match.groups()
        return format_str.format(
            title=title,
            model_link=model_link,
            paper_affiliations=paper_affiliations,
            paper_title_link=paper_title_link,
            paper_authors=paper_authors,
            supplements=" " + supplements.strip() if len(supplements) != 0 else "",
        )

    # This regex captures metadata from an English model description, including model title, model link,
    # affiliations of the paper, title of the paper, authors of the paper, and supplemental data (see DistilBERT for example).
    _re_capture_meta = re.compile(
        r"\*\*\[([^\]]*)\]\(([^\)]*)\)\*\* \(from ([^)]*)\)[^\[]*([^\)]*\)).*?by (.*?[A-Za-z\*]{2,}?)\. (.*)$"
    )
    # This regex is used to synchronize link.
    _re_capture_title_link = re.compile(r"\*\*\[([^\]]*)\]\(([^\)]*)\)\*\*")

    if len(localized_model_list) == 0:
        localized_model_index = {}
    else:
        try:
            localized_model_index = {
                re.search(r"\*\*\[([^\]]*)", line).groups()[0]: line
                for line in localized_model_list.strip().split("\n")
            }
        except AttributeError:
            raise AttributeError("A model name in localized READMEs cannot be recognized.")

    model_keys = [re.search(r"\*\*\[([^\]]*)", line).groups()[0] for line in model_list.strip().split("\n")]

    # We exclude keys in localized README not in the main one.
    readmes_match = not any([k not in model_keys for k in localized_model_index])
    localized_model_index = {k: v for k, v in localized_model_index.items() if k in model_keys}

    for model in model_list.strip().split("\n"):
        title, model_link = _re_capture_title_link.search(model).groups()
        if title not in localized_model_index:
            readmes_match = False
            # Add an anchor white space behind a model description string for regex.
            # If metadata cannot be captured, the English version will be directly copied.
            localized_model_index[title] = _re_capture_meta.sub(_rep, model + " ")
        elif _re_fill_pattern.search(localized_model_index[title]) is not None:
            update = _re_capture_meta.sub(_rep, model + " ")
            if update != localized_model_index[title]:
                readmes_match = False
                localized_model_index[title] = update
        else:
            # Synchronize link
            localized_model_index[title] = _re_capture_title_link.sub(
                f"**[{title}]({model_link})**", localized_model_index[title], count=1
            )

    sorted_index = sorted(localized_model_index.items(), key=lambda x: x[0].lower())

    return readmes_match, "\n".join((x[1] for x in sorted_index)) + "\n"


def convert_readme_to_index(model_list):
    model_list = model_list.replace("https://huggingface.co/docs/transformers/main/", "")
    return model_list.replace("https://huggingface.co/docs/transformers/", "")


def _find_text_in_file(filename, start_prompt, end_prompt):
    """
    Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty
    lines.
    """
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()
    # Find the start prompt.
    start_index = 0
    while not lines[start_index].startswith(start_prompt):
        start_index += 1
    start_index += 1

    end_index = start_index
    while not lines[end_index].startswith(end_prompt):
        end_index += 1
    end_index -= 1

    while len(lines[start_index]) <= 1:
        start_index += 1
    while len(lines[end_index]) <= 1:
        end_index -= 1
    end_index += 1
    return "".join(lines[start_index:end_index]), start_index, end_index, lines


def check_model_list_copy(overwrite=False, max_per_line=119):
    """Check the model lists in the README and index.rst are consistent and maybe `overwrite`."""
    # Fix potential doc links in the README
    with open(os.path.join(REPO_PATH, "README.md"), "r", encoding="utf-8", newline="\n") as f:
        readme = f.read()
    new_readme = readme.replace("https://huggingface.co/transformers", "https://huggingface.co/docs/transformers")
    new_readme = new_readme.replace(
        "https://huggingface.co/docs/main/transformers", "https://huggingface.co/docs/transformers/main"
    )
    if new_readme != readme:
        if overwrite:
            with open(os.path.join(REPO_PATH, "README.md"), "w", encoding="utf-8", newline="\n") as f:
                f.write(new_readme)
        else:
            raise ValueError(
                "The main README contains wrong links to the documentation of Transformers. Run `make fix-copies` to "
                "automatically fix them."
            )

    # If the introduction or the conclusion of the list change, the prompts may need to be updated.
    index_list, start_index, end_index, lines = _find_text_in_file(
        filename=os.path.join(PATH_TO_DOCS, "index.mdx"),
        start_prompt="<!--This list is updated automatically from the README",
        end_prompt="### Supported frameworks",
    )
    md_list = get_model_list(
        filename="README.md",
        start_prompt=LOCALIZED_READMES["README.md"]["start_prompt"],
        end_prompt=LOCALIZED_READMES["README.md"]["end_prompt"],
    )

    converted_md_lists = []
    for filename, value in LOCALIZED_READMES.items():
        _start_prompt = value["start_prompt"]
        _end_prompt = value["end_prompt"]
        _format_model_list = value["format_model_list"]

        localized_md_list = get_model_list(filename, _start_prompt, _end_prompt)
        readmes_match, converted_md_list = convert_to_localized_md(md_list, localized_md_list, _format_model_list)

        converted_md_lists.append((filename, readmes_match, converted_md_list, _start_prompt, _end_prompt))

    converted_md_list = convert_readme_to_index(md_list)
    if converted_md_list != index_list:
        if overwrite:
            with open(os.path.join(PATH_TO_DOCS, "index.mdx"), "w", encoding="utf-8", newline="\n") as f:
                f.writelines(lines[:start_index] + [converted_md_list] + lines[end_index:])
        else:
            raise ValueError(
                "The model list in the README changed and the list in `index.mdx` has not been updated. Run "
                "`make fix-copies` to fix this."
            )

    for converted_md_list in converted_md_lists:
        filename, readmes_match, converted_md, _start_prompt, _end_prompt = converted_md_list

        if filename == "README.md":
            continue
        if overwrite:
            _, start_index, end_index, lines = _find_text_in_file(
                filename=os.path.join(REPO_PATH, filename), start_prompt=_start_prompt, end_prompt=_end_prompt
            )
            with open(os.path.join(REPO_PATH, filename), "w", encoding="utf-8", newline="\n") as f:
                f.writelines(lines[:start_index] + [converted_md] + lines[end_index:])
        elif not readmes_match:
            raise ValueError(
                f"The model list in the README changed and the list in `{filename}` has not been updated. Run "
                "`make fix-copies` to fix this."
            )


SPECIAL_MODEL_NAMES = {
    "Bert Generation": "BERT For Sequence Generation",
    "BigBird": "BigBird-RoBERTa",
    "Data2VecAudio": "Data2Vec",
    "Data2VecText": "Data2Vec",
    "Data2VecVision": "Data2Vec",
    "DonutSwin": "Swin Transformer",
    "Marian": "MarianMT",
    "MaskFormerSwin": "Swin Transformer",
    "OpenAI GPT-2": "GPT-2",
    "OpenAI GPT": "GPT",
    "Perceiver": "Perceiver IO",
    "ViT": "Vision Transformer (ViT)",
}

# Update this list with the models that shouldn't be in the README. This only concerns modular models or those who do
# not have an associated paper.
MODELS_NOT_IN_README = [
    "BertJapanese",
    "Encoder decoder",
    "FairSeq Machine-Translation",
    "HerBERT",
    "RetriBERT",
    "Speech Encoder decoder",
    "Speech2Text",
    "Speech2Text2",
    "Vision Encoder decoder",
    "VisionTextDualEncoder",
]


README_TEMPLATE = (
    "1. **[{model_name}](https://huggingface.co/docs/main/transformers/model_doc/{model_type})** (from "
    "<FILL INSTITUTION>) released with the paper [<FILL PAPER TITLE>](<FILL ARKIV LINK>) by <FILL AUTHORS>."
)


def check_readme(overwrite=False):
    info = LOCALIZED_READMES["README.md"]
    models, start_index, end_index, lines = _find_text_in_file(
        os.path.join(REPO_PATH, "README.md"),
        info["start_prompt"],
        info["end_prompt"],
    )
    models_in_readme = [re.search(r"\*\*\[([^\]]*)", line).groups()[0] for line in models.strip().split("\n")]

    model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING
    absents = [
        (key, name)
        for key, name in model_names_mapping.items()
        if SPECIAL_MODEL_NAMES.get(name, name) not in models_in_readme
    ]
    # Remove exceptions
    absents = [(key, name) for key, name in absents if name not in MODELS_NOT_IN_README]
    if len(absents) > 0 and not overwrite:
        print(absents)
        raise ValueError(
            "The main README doesn't contain all models, run `make fix-copies` to fill it with the missing model(s)"
            " then complete the generated entries.\nIf the model is not supposed to be in the main README, add it to"
            " the list `MODELS_NOT_IN_README` in utils/check_copies.py.\nIf it has a different name in the repo than"
            " in the README, map the correspondence in `SPECIAL_MODEL_NAMES` in utils/check_copies.py."
        )

    new_models = [README_TEMPLATE.format(model_name=name, model_type=key) for key, name in absents]

    all_models = models.strip().split("\n") + new_models
    all_models = sorted(all_models, key=lambda x: re.search(r"\*\*\[([^\]]*)", x).groups()[0].lower())
    all_models = "\n".join(all_models) + "\n"

    if all_models != models:
        if overwrite:
            print("Fixing the main README.")
            with open(os.path.join(REPO_PATH, "README.md"), "w", encoding="utf-8", newline="\n") as f:
                f.writelines(lines[:start_index] + [all_models] + lines[end_index:])
        else:
            raise ValueError("The main README model list is not properly sorted. Run `make fix-copies` to fix this.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
    args = parser.parse_args()

    check_readme(args.fix_and_overwrite)
    check_copies(args.fix_and_overwrite)
    check_full_copies(args.fix_and_overwrite)