Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
from pathlib import Path | |
from transformers import AutoConfig, is_torch_available | |
from transformers.testing_utils import require_torch, torch_device | |
if is_torch_available(): | |
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments | |
class BenchmarkTest(unittest.TestCase): | |
def check_results_dict_not_empty(self, results): | |
for model_result in results.values(): | |
for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]): | |
result = model_result["result"][batch_size][sequence_length] | |
self.assertIsNotNone(result) | |
def test_inference_no_configs(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=False, | |
inference=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_inference_result) | |
self.check_results_dict_not_empty(results.memory_inference_result) | |
def test_inference_no_configs_only_pretrain(self): | |
MODEL_ID = "sgugger/tiny-distilbert-classification" | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=False, | |
inference=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
only_pretrain_model=True, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_inference_result) | |
self.check_results_dict_not_empty(results.memory_inference_result) | |
def test_inference_torchscript(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=False, | |
inference=True, | |
torchscript=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_inference_result) | |
self.check_results_dict_not_empty(results.memory_inference_result) | |
def test_inference_fp16(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=False, | |
inference=True, | |
fp16=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_inference_result) | |
self.check_results_dict_not_empty(results.memory_inference_result) | |
def test_inference_no_model_no_architectures(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
config = AutoConfig.from_pretrained(MODEL_ID) | |
# set architectures equal to `None` | |
config.architectures = None | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=True, | |
inference=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_inference_result) | |
self.check_results_dict_not_empty(results.memory_inference_result) | |
def test_train_no_configs(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=True, | |
inference=False, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_train_result) | |
self.check_results_dict_not_empty(results.memory_train_result) | |
def test_train_no_configs_fp16(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=True, | |
inference=False, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
fp16=True, | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_train_result) | |
self.check_results_dict_not_empty(results.memory_train_result) | |
def test_inference_with_configs(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
config = AutoConfig.from_pretrained(MODEL_ID) | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=False, | |
inference=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_inference_result) | |
self.check_results_dict_not_empty(results.memory_inference_result) | |
def test_inference_encoder_decoder_with_configs(self): | |
MODEL_ID = "sshleifer/tinier_bart" | |
config = AutoConfig.from_pretrained(MODEL_ID) | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=False, | |
inference=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_inference_result) | |
self.check_results_dict_not_empty(results.memory_inference_result) | |
def test_train_with_configs(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
config = AutoConfig.from_pretrained(MODEL_ID) | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=True, | |
inference=False, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_train_result) | |
self.check_results_dict_not_empty(results.memory_train_result) | |
def test_train_encoder_decoder_with_configs(self): | |
MODEL_ID = "sshleifer/tinier_bart" | |
config = AutoConfig.from_pretrained(MODEL_ID) | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=True, | |
inference=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) | |
results = benchmark.run() | |
self.check_results_dict_not_empty(results.time_train_result) | |
self.check_results_dict_not_empty(results.memory_train_result) | |
def test_save_csv_files(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=True, | |
inference=True, | |
save_to_csv=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"), | |
train_memory_csv_file=os.path.join(tmp_dir, "train_mem.csv"), | |
inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"), | |
train_time_csv_file=os.path.join(tmp_dir, "train_time.csv"), | |
env_info_csv_file=os.path.join(tmp_dir, "env.csv"), | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args) | |
benchmark.run() | |
self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists()) | |
self.assertTrue(Path(os.path.join(tmp_dir, "train_time.csv")).exists()) | |
self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists()) | |
self.assertTrue(Path(os.path.join(tmp_dir, "train_mem.csv")).exists()) | |
self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists()) | |
def test_trace_memory(self): | |
MODEL_ID = "sshleifer/tiny-gpt2" | |
def _check_summary_is_not_empty(summary): | |
self.assertTrue(hasattr(summary, "sequential")) | |
self.assertTrue(hasattr(summary, "cumulative")) | |
self.assertTrue(hasattr(summary, "current")) | |
self.assertTrue(hasattr(summary, "total")) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
benchmark_args = PyTorchBenchmarkArguments( | |
models=[MODEL_ID], | |
training=True, | |
inference=True, | |
sequence_lengths=[8], | |
batch_sizes=[1], | |
log_filename=os.path.join(tmp_dir, "log.txt"), | |
log_print=True, | |
trace_memory_line_by_line=True, | |
multi_process=False, | |
) | |
benchmark = PyTorchBenchmark(benchmark_args) | |
result = benchmark.run() | |
_check_summary_is_not_empty(result.inference_summary) | |
_check_summary_is_not_empty(result.train_summary) | |
self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists()) | |