Li
add transformers
455a40f
# coding=utf-8
# Copyright 2023 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class StreamerTester(unittest.TestCase):
def test_text_streamer_matches_non_streaming(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
greedy_text = tokenizer.decode(greedy_ids[0])
with CaptureStdout() as cs:
streamer = TextStreamer(tokenizer)
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
streamer_text = cs.out[:-1]
self.assertEqual(streamer_text, greedy_text)
def test_iterator_streamer_matches_non_streaming(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
greedy_text = tokenizer.decode(greedy_ids[0])
streamer = TextIteratorStreamer(tokenizer)
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
streamer_text = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(streamer_text, greedy_text)
def test_text_streamer_skip_prompt(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
new_greedy_ids = greedy_ids[:, input_ids.shape[1] :]
new_greedy_text = tokenizer.decode(new_greedy_ids[0])
with CaptureStdout() as cs:
streamer = TextStreamer(tokenizer, skip_prompt=True)
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
streamer_text = cs.out[:-1]
self.assertEqual(streamer_text, new_greedy_text)
def test_text_streamer_decode_kwargs(self):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
model = AutoModelForCausalLM.from_pretrained("distilgpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id
with CaptureStdout() as cs:
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer)
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
streamer_text = cs.out[:-1] # Remove the final "\n"
streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt")
self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1))
def test_iterator_streamer_timeout(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
model.config.eos_token_id = -1
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
streamer = TextIteratorStreamer(tokenizer, timeout=0.001)
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(Empty):
streamer_text = ""
for new_text in streamer:
streamer_text += new_text