multimodal / transformers /tests /test_image_processing_common.py
Li
add transformers
455a40f
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import (
TOKEN,
USER,
check_json_file_has_correct_format,
get_tests_dir,
is_staging_test,
require_torch,
require_vision,
)
from transformers.utils import is_torch_available, is_vision_available
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
if is_torch_available():
import numpy as np
import torch
if is_vision_available():
from PIL import Image
SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures")
def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
One can specify whether the images are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
image_inputs = []
for i in range(image_processor_tester.batch_size):
if equal_resolution:
width = height = image_processor_tester.max_resolution
else:
# To avoid getting image width/height 0
min_resolution = image_processor_tester.min_resolution
if getattr(image_processor_tester, "size_divisor", None):
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
min_resolution = max(image_processor_tester.size_divisor, min_resolution)
width, height = np.random.choice(np.arange(min_resolution, image_processor_tester.max_resolution), 2)
image_inputs.append(
np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8)
)
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(image) for image in image_inputs]
return image_inputs
def prepare_video(image_processor_tester, width=10, height=10, numpify=False, torchify=False):
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
video = []
for i in range(image_processor_tester.num_frames):
video.append(np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]
if torchify:
video = [torch.from_numpy(frame) for frame in video]
return video
def prepare_video_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.
One can specify whether the videos are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
video_inputs = []
for i in range(image_processor_tester.batch_size):
if equal_resolution:
width = height = image_processor_tester.max_resolution
else:
width, height = np.random.choice(
np.arange(image_processor_tester.min_resolution, image_processor_tester.max_resolution), 2
)
video = prepare_video(
image_processor_tester=image_processor_tester,
width=width,
height=height,
numpify=numpify,
torchify=torchify,
)
video_inputs.append(video)
return video_inputs
class ImageProcessingSavingTestMixin:
test_cast_dtype = None
def test_image_processor_to_json_string(self):
image_processor = self.image_processing_class(**self.image_processor_dict)
obj = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
self.assertEqual(obj[key], value)
def test_image_processor_to_json_file(self):
image_processor_first = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "image_processor.json")
image_processor_first.to_json_file(json_file_path)
image_processor_second = self.image_processing_class.from_json_file(json_file_path)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_image_processor_from_and_save_pretrained(self):
image_processor_first = self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_init_without_params(self):
image_processor = self.image_processing_class()
self.assertIsNotNone(image_processor)
@require_torch
@require_vision
def test_cast_dtype_device(self):
if self.test_cast_dtype is not None:
# Initialize image_processor
image_processor = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
encoding = image_processor(image_inputs, return_tensors="pt")
# for layoutLM compatiblity
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float32)
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
with self.assertRaises(TypeError):
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
# Try with text + image feature
encoding = image_processor(image_inputs, return_tensors="pt")
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
encoding = encoding.to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
self.assertEqual(encoding.input_ids.dtype, torch.long)
class ImageProcessorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.request", return_value=response_mock) as mock_head:
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = ViTImageProcessor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json"
)
@is_staging_test
class ImageProcessorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-image-processor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-image-processor")
except HTTPError:
pass
def test_push_to_hub(self):
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("test-image-processor", use_auth_token=self._token)
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-image-processor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
tmp_dir, repo_id="test-image-processor", push_to_hub=True, use_auth_token=self._token
)
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
def test_push_to_hub_in_organization(self):
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token)
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-image-processor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
tmp_dir, repo_id="valid_org/test-image-processor-org", push_to_hub=True, use_auth_token=self._token
)
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
def test_push_to_hub_dynamic_image_processor(self):
CustomImageProcessor.register_for_auto_class()
image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map,
{"ImageProcessor": "custom_image_processing.CustomImageProcessor"},
)
new_image_processor = AutoImageProcessor.from_pretrained(
f"{USER}/test-dynamic-image-processor", trust_remote_code=True
)
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")
def test_image_processor_from_pretrained_subfolder(self):
with self.assertRaises(OSError):
# config is in subfolder, the following should not work without specifying the subfolder
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants")
config = AutoImageProcessor.from_pretrained(
"hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor"
)
self.assertIsNotNone(config)