File size: 7,810 Bytes
da8d589
374f426
9d9fe0d
d2b7e94
 
 
374f426
d2b7e94
bed01bd
 
 
 
 
374f426
d2b7e94
 
374f426
 
d2b7e94
 
 
 
 
f83b1b7
374f426
 
 
 
 
ae79826
 
 
 
 
 
 
 
 
 
 
 
 
 
374f426
 
 
 
da8d589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374f426
 
 
da8d589
 
374f426
 
 
 
 
 
 
 
da8d589
503e823
da8d589
627d3d7
da8d589
 
374f426
503e823
ae79826
 
 
 
 
1df74c6
 
bed01bd
 
 
 
 
9d9fe0d
ae79826
374f426
 
 
 
 
 
 
 
bed01bd
374f426
da8d589
 
374f426
 
 
 
bed01bd
374f426
bed01bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1df74c6
bed01bd
 
 
 
 
 
ae79826
 
bed01bd
 
ae79826
 
374f426
f83b1b7
374f426
f83b1b7
 
503e823
374f426
 
da8d589
 
 
 
 
 
 
 
 
 
374f426
 
da8d589
 
 
1df74c6
 
bed01bd
 
 
 
 
9d9fe0d
374f426
 
 
 
 
 
 
 
 
 
bed01bd
374f426
 
bed01bd
374f426
 
 
 
 
 
 
 
 
 
 
 
 
da8d589
374f426
 
bed01bd
 
374f426
da8d589
bed01bd
 
 
 
da8d589
bed01bd
 
 
 
 
374f426
bed01bd
 
 
374f426
 
bed01bd
 
374f426
1df74c6
bed01bd
 
 
 
 
 
 
 
 
 
 
 
 
374f426
 
bed01bd
 
 
 
 
 
 
da8d589
bed01bd
 
 
ae79826
374f426
 
 
 
 
503e823
9d9fe0d
 
 
 
 
374f426
 
 
 
 
503e823
f367757
 
374f426
f367757
374f426
 
f367757
 
374f426
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from typing import Union

import gradio as gr
import numpy as np
import torch
import torch.profiler

from modules import refiner
from modules.api.impl.handler.SSMLHandler import SSMLHandler
from modules.api.impl.handler.TTSHandler import TTSHandler
from modules.api.impl.model.audio_model import AdjustConfig
from modules.api.impl.model.chattts_model import ChatTTSConfig, InferConfig
from modules.api.impl.model.enhancer_model import EnhancerConfig
from modules.api.utils import calc_spk_style
from modules.data import styles_mgr
from modules.Enhancer.ResembleEnhance import apply_audio_enhance as _apply_audio_enhance
from modules.normalization import text_normalize
from modules.SentenceSplitter import SentenceSplitter
from modules.speaker import Speaker, speaker_mgr
from modules.ssml_parser.SSMLParser import SSMLBreak, SSMLSegment, create_ssml_parser
from modules.utils import audio
from modules.utils.hf import spaces
from modules.webui import webui_config


def get_speakers():
    return speaker_mgr.list_speakers()


def get_speaker_names() -> tuple[list[Speaker], list[str]]:
    speakers = get_speakers()

    def get_speaker_show_name(spk):
        if spk.gender == "*" or spk.gender == "":
            return spk.name
        return f"{spk.gender} : {spk.name}"

    speaker_names = [get_speaker_show_name(speaker) for speaker in speakers]
    speaker_names.sort(key=lambda x: x.startswith("*") and "-1" or x)

    return speakers, speaker_names


def get_styles():
    return styles_mgr.list_items()


def load_spk_info(file):
    if file is None:
        return "empty"
    try:

        spk: Speaker = Speaker.from_file(file)
        infos = spk.to_json()
        return f"""
- name: {infos.name}
- gender: {infos.gender}
- describe: {infos.describe}
    """.strip()
    except:
        return "load failed"


def segments_length_limit(
    segments: list[Union[SSMLBreak, SSMLSegment]], total_max: int
) -> list[Union[SSMLBreak, SSMLSegment]]:
    ret_segments = []
    total_len = 0
    for seg in segments:
        if isinstance(seg, SSMLBreak):
            ret_segments.append(seg)
            continue
        total_len += len(seg["text"])
        if total_len > total_max:
            break
        ret_segments.append(seg)
    return ret_segments


@torch.inference_mode()
@spaces.GPU(duration=120)
def apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance):
    return _apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance)


@torch.inference_mode()
@spaces.GPU(duration=120)
def synthesize_ssml(
    ssml: str,
    batch_size=4,
    enable_enhance=False,
    enable_denoise=False,
    eos: str = "[uv_break]",
    spliter_thr: int = 100,
    pitch: float = 0,
    speed_rate: float = 1,
    volume_gain_db: float = 0,
    normalize: bool = True,
    headroom: float = 1,
    progress=gr.Progress(track_tqdm=True),
):
    try:
        batch_size = int(batch_size)
    except Exception:
        batch_size = 8

    ssml = ssml.strip()

    if ssml == "":
        raise gr.Error("SSML is empty, please input some SSML")

    parser = create_ssml_parser()
    segments = parser.parse(ssml)
    max_len = webui_config.ssml_max
    segments = segments_length_limit(segments, max_len)

    if len(segments) == 0:
        raise gr.Error("No valid segments in SSML")

    infer_config = InferConfig(
        batch_size=batch_size,
        spliter_threshold=spliter_thr,
        eos=eos,
        # NOTE: SSML not support `infer_seed` contorl
        # seed=42,
    )
    adjust_config = AdjustConfig(
        pitch=pitch,
        speed_rate=speed_rate,
        volume_gain_db=volume_gain_db,
        normalize=normalize,
        headroom=headroom,
    )
    enhancer_config = EnhancerConfig(
        enabled=enable_denoise or enable_enhance or False,
        lambd=0.9 if enable_denoise else 0.1,
    )

    handler = SSMLHandler(
        ssml_content=ssml,
        infer_config=infer_config,
        adjust_config=adjust_config,
        enhancer_config=enhancer_config,
    )

    audio_data, sr = handler.enqueue()

    # NOTE: 这里必须要加,不然 gradio 没法解析成 mp3 格式
    audio_data = audio.audio_to_int16(audio_data)

    return sr, audio_data


# @torch.inference_mode()
@spaces.GPU(duration=120)
def tts_generate(
    text,
    temperature=0.3,
    top_p=0.7,
    top_k=20,
    spk=-1,
    infer_seed=-1,
    use_decoder=True,
    prompt1="",
    prompt2="",
    prefix="",
    style="",
    disable_normalize=False,
    batch_size=4,
    enable_enhance=False,
    enable_denoise=False,
    spk_file=None,
    spliter_thr: int = 100,
    eos: str = "[uv_break]",
    pitch: float = 0,
    speed_rate: float = 1,
    volume_gain_db: float = 0,
    normalize: bool = True,
    headroom: float = 1,
    progress=gr.Progress(track_tqdm=True),
):
    try:
        batch_size = int(batch_size)
    except Exception:
        batch_size = 4

    max_len = webui_config.tts_max
    text = text.strip()[0:max_len]

    if text == "":
        raise gr.Error("Text is empty, please input some text")

    if style == "*auto":
        style = ""

    if isinstance(top_k, float):
        top_k = int(top_k)

    params = calc_spk_style(spk=spk, style=style)
    spk = params.get("spk", spk)

    infer_seed = infer_seed or params.get("seed", infer_seed)
    temperature = temperature or params.get("temperature", temperature)
    prefix = prefix or params.get("prefix", prefix)
    prompt1 = prompt1 or params.get("prompt1", "")
    prompt2 = prompt2 or params.get("prompt2", "")

    infer_seed = np.clip(infer_seed, -1, 2**32 - 1, out=None, dtype=np.float64)
    infer_seed = int(infer_seed)

    if isinstance(spk, int):
        spk = Speaker.from_seed(spk)

    if spk_file:
        try:
            spk: Speaker = Speaker.from_file(spk_file)
        except Exception:
            raise gr.Error("Failed to load speaker file")

        if not isinstance(spk.emb, torch.Tensor):
            raise gr.Error("Speaker file is not supported")

    tts_config = ChatTTSConfig(
        style=style,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        prefix=prefix,
        prompt1=prompt1,
        prompt2=prompt2,
    )
    infer_config = InferConfig(
        batch_size=batch_size,
        spliter_threshold=spliter_thr,
        eos=eos,
        seed=infer_seed,
    )
    adjust_config = AdjustConfig(
        pitch=pitch,
        speed_rate=speed_rate,
        volume_gain_db=volume_gain_db,
        normalize=normalize,
        headroom=headroom,
    )
    enhancer_config = EnhancerConfig(
        enabled=enable_denoise or enable_enhance or False,
        lambd=0.9 if enable_denoise else 0.1,
    )

    handler = TTSHandler(
        text_content=text,
        spk=spk,
        tts_config=tts_config,
        infer_config=infer_config,
        adjust_config=adjust_config,
        enhancer_config=enhancer_config,
    )

    audio_data, sample_rate = handler.enqueue()

    # NOTE: 这里必须要加,不然 gradio 没法解析成 mp3 格式
    audio_data = audio.audio_to_int16(audio_data)
    return sample_rate, audio_data


@torch.inference_mode()
@spaces.GPU(duration=120)
def refine_text(
    text: str,
    prompt: str,
    progress=gr.Progress(track_tqdm=True),
):
    text = text_normalize(text)
    return refiner.refine_text(text, prompt=prompt)


@torch.inference_mode()
@spaces.GPU(duration=120)
def split_long_text(long_text_input, spliter_threshold=100, eos=""):
    spliter = SentenceSplitter(threshold=spliter_threshold)
    sentences = spliter.parse(long_text_input)
    sentences = [text_normalize(s) + eos for s in sentences]
    data = []
    for i, text in enumerate(sentences):
        token_length = spliter.count_tokens(text)
        data.append([i, text, token_length])
    return data