Spaces:
Sleeping
Sleeping
File size: 10,662 Bytes
32b2aaa 1df74c6 32b2aaa 1df74c6 32b2aaa 1df74c6 32b2aaa 1df74c6 32b2aaa 1df74c6 32b2aaa 1df74c6 32b2aaa 1df74c6 32b2aaa 1df74c6 32b2aaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import logging
from dataclasses import dataclass
from functools import partial
from typing import Protocol, Union
import matplotlib.pyplot as plt
import numpy as np
import scipy
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from tqdm import trange
from .wn import WN
logger = logging.getLogger(__name__)
class VelocityField(Protocol):
def __call__(self, *, t: Tensor, ψt: Tensor, dt: Tensor) -> Tensor: ...
class Solver:
def __init__(
self,
method="midpoint",
nfe=32,
viz_name="solver",
viz_every=100,
mel_fn=None,
time_mapping_divisor=4,
verbose=False,
):
self.configurate_(nfe=nfe, method=method)
self.verbose = verbose
self.viz_every = viz_every
self.viz_name = viz_name
self._camera = None
self._mel_fn = mel_fn
self._time_mapping = partial(
self.exponential_decay_mapping, n=time_mapping_divisor
)
def configurate_(self, nfe=None, method=None):
if nfe is None:
nfe = self.nfe
if method is None:
method = self.method
if nfe == 1 and method in ("midpoint", "rk4"):
logger.warning(
f"1 NFE is not supported for {method}, using euler method instead."
)
method = "euler"
self.nfe = nfe
self.method = method
@property
def time_mapping(self):
return self._time_mapping
@staticmethod
def exponential_decay_mapping(t, n=4):
"""
Args:
n: target step
"""
def h(t, a):
return (a**t - 1) / (a - 1)
# Solve h(1/n) = 0.5
a = float(scipy.optimize.fsolve(lambda a: h(1 / n, a) - 0.5, x0=0))
t = h(t, a=a)
return t
@torch.no_grad()
def _maybe_camera_snap(self, *, ψt, t):
camera = self._camera
if camera is not None:
if ψt.shape[1] == 1:
# Waveform, b 1 t, plot every 100 samples
plt.subplot(211)
plt.plot(ψt.detach().cpu().numpy()[0, 0, ::100], color="blue")
if self._mel_fn is not None:
plt.subplot(212)
mel = self._mel_fn(ψt.detach().cpu().numpy()[0, 0])
plt.imshow(mel, origin="lower", interpolation="none")
elif ψt.shape[1] == 2:
# Complex
plt.subplot(121)
plt.imshow(
ψt.detach().cpu().numpy()[0, 0],
origin="lower",
interpolation="none",
)
plt.subplot(122)
plt.imshow(
ψt.detach().cpu().numpy()[0, 1],
origin="lower",
interpolation="none",
)
else:
# Spectrogram, b c t
plt.imshow(
ψt.detach().cpu().numpy()[0], origin="lower", interpolation="none"
)
ax = plt.gca()
ax.text(0.5, 1.01, f"t={t:.2f}", transform=ax.transAxes, ha="center")
camera.snap()
@staticmethod
def _euler_step(t, ψt, dt, f: VelocityField):
return ψt + dt * f(t=t, ψt=ψt, dt=dt)
@staticmethod
def _midpoint_step(t, ψt, dt, f: VelocityField):
return ψt + dt * f(t=t + dt / 2, ψt=ψt + dt * f(t=t, ψt=ψt, dt=dt) / 2, dt=dt)
@staticmethod
def _rk4_step(t, ψt, dt, f: VelocityField):
k1 = f(t=t, ψt=ψt, dt=dt)
k2 = f(t=t + dt / 2, ψt=ψt + dt * k1 / 2, dt=dt)
k3 = f(t=t + dt / 2, ψt=ψt + dt * k2 / 2, dt=dt)
k4 = f(t=t + dt, ψt=ψt + dt * k3, dt=dt)
return ψt + dt * (k1 + 2 * k2 + 2 * k3 + k4) / 6
@property
def _step(self):
if self.method == "euler":
return self._euler_step
elif self.method == "midpoint":
return self._midpoint_step
elif self.method == "rk4":
return self._rk4_step
else:
raise ValueError(f"Unknown method: {self.method}")
def get_running_train_loop(self):
try:
# Lazy import
from ...utils.train_loop import TrainLoop
return TrainLoop.get_running_loop()
except ImportError:
return None
@property
def visualizing(self):
loop = self.get_running_train_loop()
if loop is None:
return
out_path = loop.make_current_step_viz_path(self.viz_name, ".gif")
return loop.global_step % self.viz_every == 0 and not out_path.exists()
def _reset_camera(self):
try:
from celluloid import Camera
self._camera = Camera(plt.figure())
except:
pass
def _maybe_dump_camera(self):
camera = self._camera
loop = self.get_running_train_loop()
if camera is not None and loop is not None:
animation = camera.animate()
out_path = loop.make_current_step_viz_path(self.viz_name, ".gif")
out_path.parent.mkdir(exist_ok=True, parents=True)
animation.save(out_path, writer="pillow", fps=4)
plt.close()
self._camera = None
@property
def n_steps(self):
n = self.nfe
if self.method == "euler":
pass
elif self.method == "midpoint":
n //= 2
elif self.method == "rk4":
n //= 4
else:
raise ValueError(f"Unknown method: {self.method}")
return n
def solve(self, f: VelocityField, ψ0: Tensor, t0=0.0, t1=1.0):
ts = self._time_mapping(np.linspace(t0, t1, self.n_steps + 1))
if self.visualizing:
self._reset_camera()
if self.verbose:
steps = trange(self.n_steps, desc="CFM inference")
else:
steps = range(self.n_steps)
ψt = ψ0
for i in steps:
dt = ts[i + 1] - ts[i]
t = ts[i]
self._maybe_camera_snap(ψt=ψt, t=t)
ψt = self._step(t=t, ψt=ψt, dt=dt, f=f)
self._maybe_camera_snap(ψt=ψt, t=ts[-1])
ψ1 = ψt
del ψt
self._maybe_dump_camera()
return ψ1
def __call__(self, f: VelocityField, ψ0: Tensor, t0=0.0, t1=1.0):
return self.solve(f=f, ψ0=ψ0, t0=t0, t1=t1)
class SinusodialTimeEmbedding(nn.Module):
def __init__(self, d_embed):
super().__init__()
self.d_embed = d_embed
assert d_embed % 2 == 0
def forward(self, t):
t = t.unsqueeze(-1) # ... 1
p = torch.linspace(0, 4, self.d_embed // 2).to(t)
while p.dim() < t.dim():
p = p.unsqueeze(0) # ... d/2
sin = torch.sin(t * 10**p)
cos = torch.cos(t * 10**p)
return torch.cat([sin, cos], dim=-1)
@dataclass(eq=False)
class CFM(nn.Module):
"""
This mixin is for general diffusion models.
ψ0 stands for the gaussian noise, and ψ1 is the data point.
Here we follow the CFM style:
The generation process (reverse process) is from t=0 to t=1.
The forward process is from t=1 to t=0.
"""
cond_dim: int
output_dim: int
time_emb_dim: int = 128
viz_name: str = "cfm"
solver_nfe: int = 32
solver_method: str = "midpoint"
time_mapping_divisor: int = 4
def __post_init__(self):
super().__init__()
self.solver = Solver(
viz_name=self.viz_name,
viz_every=1,
nfe=self.solver_nfe,
method=self.solver_method,
time_mapping_divisor=self.time_mapping_divisor,
)
self.emb = SinusodialTimeEmbedding(self.time_emb_dim)
self.net = WN(
input_dim=self.output_dim,
output_dim=self.output_dim,
local_dim=self.cond_dim,
global_dim=self.time_emb_dim,
)
def _perturb(self, ψ1: Tensor, t: Union[Tensor, None] = None):
"""
Perturb ψ1 to ψt.
"""
raise NotImplementedError
def _sample_ψ0(self, x: Tensor):
"""
Args:
x: (b c t), which implies the shape of ψ0
"""
shape = list(x.shape)
shape[1] = self.output_dim
if self.training:
g = None
else:
g = torch.Generator(device=x.device)
g.manual_seed(0) # deterministic sampling during eval
ψ0 = torch.randn(shape, device=x.device, dtype=x.dtype, generator=g)
return ψ0
@property
def sigma(self):
return 1e-4
def _to_ψt(self, *, ψ1: Tensor, ψ0: Tensor, t: Tensor):
"""
Eq (22)
"""
while t.dim() < ψ1.dim():
t = t.unsqueeze(-1)
μ = t * ψ1 + (1 - t) * ψ0
return μ + torch.randn_like(μ) * self.sigma
def _to_u(self, *, ψ1, ψ0: Tensor):
"""
Eq (21)
"""
return ψ1 - ψ0
def _to_v(self, *, ψt, x, t: Union[float, Tensor]):
"""
Args:
ψt: (b c t)
x: (b c t)
t: (b)
Returns:
v: (b c t)
"""
if isinstance(t, (float, int)):
t = torch.full(ψt.shape[:1], t).to(ψt)
t = t.clamp(0, 1) # [0, 1)
g = self.emb(t) # (b d)
v = self.net(ψt, l=x, g=g)
return v
def compute_losses(self, x, y, ψ0) -> dict:
"""
Args:
x: (b c t)
y: (b c t)
Returns:
losses: dict
"""
t = torch.rand(len(x), device=x.device, dtype=x.dtype)
t = self.solver.time_mapping(t)
if ψ0 is None:
ψ0 = self._sample_ψ0(x)
ψt = self._to_ψt(ψ1=y, t=t, ψ0=ψ0)
v = self._to_v(ψt=ψt, t=t, x=x)
u = self._to_u(ψ1=y, ψ0=ψ0)
losses = dict(l1=F.l1_loss(v, u))
return losses
@torch.inference_mode()
def sample(self, x, ψ0=None, t0=0.0):
"""
Args:
x: (b c t)
Returns:
y: (b ... t)
"""
if ψ0 is None:
ψ0 = self._sample_ψ0(x)
f = lambda t, ψt, dt: self._to_v(ψt=ψt, t=t, x=x)
ψ1 = self.solver(f=f, ψ0=ψ0, t0=t0)
return ψ1
def forward(
self,
x: Tensor,
y: Union[Tensor, None] = None,
ψ0: Union[Tensor, None] = None,
t0=0.0,
):
if y is None:
y = self.sample(x, ψ0=ψ0, t0=t0)
else:
self.losses = self.compute_losses(x, y, ψ0=ψ0)
return y
|