File size: 4,407 Bytes
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc4336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01e655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc4336
 
 
 
 
01e655b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from fastapi import Depends, HTTPException, Query
from fastapi.responses import StreamingResponse

import io
from pydantic import BaseModel
import soundfile as sf
from fastapi.responses import FileResponse


from modules.normalization import text_normalize

from modules.api import utils as api_utils
from modules.api.Api import APIManager
from modules.synthesize_audio import synthesize_audio


class TTSParams(BaseModel):
    text: str = Query(..., description="Text to synthesize")
    spk: str = Query(
        "female2", description="Specific speaker by speaker name or speaker seed"
    )
    style: str = Query("chat", description="Specific style by style name")
    temperature: float = Query(
        0.3, description="Temperature for sampling (may be overridden by style or spk)"
    )
    top_P: float = Query(
        0.5, description="Top P for sampling (may be overridden by style or spk)"
    )
    top_K: int = Query(
        20, description="Top K for sampling (may be overridden by style or spk)"
    )
    seed: int = Query(
        42, description="Seed for generate (may be overridden by style or spk)"
    )
    format: str = Query("mp3", description="Response audio format: [mp3,wav]")
    prompt1: str = Query("", description="Text prompt for inference")
    prompt2: str = Query("", description="Text prompt for inference")
    prefix: str = Query("", description="Text prefix for inference")
    bs: str = Query("8", description="Batch size for inference")
    thr: str = Query("100", description="Threshold for sentence spliter")


async def synthesize_tts(params: TTSParams = Depends()):
    try:
        # Validate text
        if not params.text.strip():
            raise HTTPException(
                status_code=422, detail="Text parameter cannot be empty"
            )

        # Validate temperature
        if not (0 <= params.temperature <= 1):
            raise HTTPException(
                status_code=422, detail="Temperature must be between 0 and 1"
            )

        # Validate top_P
        if not (0 <= params.top_P <= 1):
            raise HTTPException(status_code=422, detail="top_P must be between 0 and 1")

        # Validate top_K
        if params.top_K <= 0:
            raise HTTPException(
                status_code=422, detail="top_K must be a positive integer"
            )
        if params.top_K > 100:
            raise HTTPException(
                status_code=422, detail="top_K must be less than or equal to 100"
            )

        # Validate format
        if params.format not in ["mp3", "wav"]:
            raise HTTPException(
                status_code=422,
                detail="Invalid format. Supported formats are mp3 and wav",
            )

        text = text_normalize(params.text, is_end=False)

        calc_params = api_utils.calc_spk_style(spk=params.spk, style=params.style)

        spk = calc_params.get("spk", params.spk)
        seed = params.seed or calc_params.get("seed", params.seed)
        temperature = params.temperature or calc_params.get(
            "temperature", params.temperature
        )
        prefix = params.prefix or calc_params.get("prefix", params.prefix)
        prompt1 = params.prompt1 or calc_params.get("prompt1", params.prompt1)
        prompt2 = params.prompt2 or calc_params.get("prompt2", params.prompt2)

        batch_size = int(params.bs)
        threshold = int(params.thr)

        sample_rate, audio_data = synthesize_audio(
            text,
            temperature=temperature,
            top_P=params.top_P,
            top_K=params.top_K,
            spk=spk,
            infer_seed=seed,
            prompt1=prompt1,
            prompt2=prompt2,
            prefix=prefix,
            batch_size=batch_size,
            spliter_threshold=threshold,
        )

        buffer = io.BytesIO()
        sf.write(buffer, audio_data, sample_rate, format="wav")
        buffer.seek(0)

        if format == "mp3":
            buffer = api_utils.wav_to_mp3(buffer)

        return StreamingResponse(buffer, media_type="audio/wav")

    except Exception as e:
        import logging

        logging.exception(e)

        if isinstance(e, HTTPException):
            raise e
        else:
            raise HTTPException(status_code=500, detail=str(e))


def setup(api_manager: APIManager):
    api_manager.get("/v1/tts", response_class=FileResponse)(synthesize_tts)