Spaces:
Sleeping
Sleeping
File size: 4,407 Bytes
01e655b ebc4336 01e655b ebc4336 01e655b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from fastapi import Depends, HTTPException, Query
from fastapi.responses import StreamingResponse
import io
from pydantic import BaseModel
import soundfile as sf
from fastapi.responses import FileResponse
from modules.normalization import text_normalize
from modules.api import utils as api_utils
from modules.api.Api import APIManager
from modules.synthesize_audio import synthesize_audio
class TTSParams(BaseModel):
text: str = Query(..., description="Text to synthesize")
spk: str = Query(
"female2", description="Specific speaker by speaker name or speaker seed"
)
style: str = Query("chat", description="Specific style by style name")
temperature: float = Query(
0.3, description="Temperature for sampling (may be overridden by style or spk)"
)
top_P: float = Query(
0.5, description="Top P for sampling (may be overridden by style or spk)"
)
top_K: int = Query(
20, description="Top K for sampling (may be overridden by style or spk)"
)
seed: int = Query(
42, description="Seed for generate (may be overridden by style or spk)"
)
format: str = Query("mp3", description="Response audio format: [mp3,wav]")
prompt1: str = Query("", description="Text prompt for inference")
prompt2: str = Query("", description="Text prompt for inference")
prefix: str = Query("", description="Text prefix for inference")
bs: str = Query("8", description="Batch size for inference")
thr: str = Query("100", description="Threshold for sentence spliter")
async def synthesize_tts(params: TTSParams = Depends()):
try:
# Validate text
if not params.text.strip():
raise HTTPException(
status_code=422, detail="Text parameter cannot be empty"
)
# Validate temperature
if not (0 <= params.temperature <= 1):
raise HTTPException(
status_code=422, detail="Temperature must be between 0 and 1"
)
# Validate top_P
if not (0 <= params.top_P <= 1):
raise HTTPException(status_code=422, detail="top_P must be between 0 and 1")
# Validate top_K
if params.top_K <= 0:
raise HTTPException(
status_code=422, detail="top_K must be a positive integer"
)
if params.top_K > 100:
raise HTTPException(
status_code=422, detail="top_K must be less than or equal to 100"
)
# Validate format
if params.format not in ["mp3", "wav"]:
raise HTTPException(
status_code=422,
detail="Invalid format. Supported formats are mp3 and wav",
)
text = text_normalize(params.text, is_end=False)
calc_params = api_utils.calc_spk_style(spk=params.spk, style=params.style)
spk = calc_params.get("spk", params.spk)
seed = params.seed or calc_params.get("seed", params.seed)
temperature = params.temperature or calc_params.get(
"temperature", params.temperature
)
prefix = params.prefix or calc_params.get("prefix", params.prefix)
prompt1 = params.prompt1 or calc_params.get("prompt1", params.prompt1)
prompt2 = params.prompt2 or calc_params.get("prompt2", params.prompt2)
batch_size = int(params.bs)
threshold = int(params.thr)
sample_rate, audio_data = synthesize_audio(
text,
temperature=temperature,
top_P=params.top_P,
top_K=params.top_K,
spk=spk,
infer_seed=seed,
prompt1=prompt1,
prompt2=prompt2,
prefix=prefix,
batch_size=batch_size,
spliter_threshold=threshold,
)
buffer = io.BytesIO()
sf.write(buffer, audio_data, sample_rate, format="wav")
buffer.seek(0)
if format == "mp3":
buffer = api_utils.wav_to_mp3(buffer)
return StreamingResponse(buffer, media_type="audio/wav")
except Exception as e:
import logging
logging.exception(e)
if isinstance(e, HTTPException):
raise e
else:
raise HTTPException(status_code=500, detail=str(e))
def setup(api_manager: APIManager):
api_manager.get("/v1/tts", response_class=FileResponse)(synthesize_tts)
|