File size: 8,293 Bytes
da8d589
374f426
da8d589
374f426
da8d589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374f426
 
 
 
 
 
da8d589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374f426
da8d589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import io
import gradio as gr
import torch

from modules.hf import spaces
from modules.webui.webui_utils import get_speakers, tts_generate
from modules.speaker import speaker_mgr, Speaker

import tempfile


def spk_to_tensor(spk):
    spk = spk.split(" : ")[1].strip() if " : " in spk else spk
    if spk == "None" or spk == "":
        return None
    return speaker_mgr.get_speaker(spk).emb


def get_speaker_show_name(spk):
    if spk.gender == "*" or spk.gender == "":
        return spk.name
    return f"{spk.gender} : {spk.name}"


def merge_spk(
    spk_a,
    spk_a_w,
    spk_b,
    spk_b_w,
    spk_c,
    spk_c_w,
    spk_d,
    spk_d_w,
):
    tensor_a = spk_to_tensor(spk_a)
    tensor_b = spk_to_tensor(spk_b)
    tensor_c = spk_to_tensor(spk_c)
    tensor_d = spk_to_tensor(spk_d)

    assert (
        tensor_a is not None
        or tensor_b is not None
        or tensor_c is not None
        or tensor_d is not None
    ), "At least one speaker should be selected"

    merge_tensor = torch.zeros_like(
        tensor_a
        if tensor_a is not None
        else (
            tensor_b
            if tensor_b is not None
            else tensor_c if tensor_c is not None else tensor_d
        )
    )

    total_weight = 0
    if tensor_a is not None:
        merge_tensor += spk_a_w * tensor_a
        total_weight += spk_a_w
    if tensor_b is not None:
        merge_tensor += spk_b_w * tensor_b
        total_weight += spk_b_w
    if tensor_c is not None:
        merge_tensor += spk_c_w * tensor_c
        total_weight += spk_c_w
    if tensor_d is not None:
        merge_tensor += spk_d_w * tensor_d
        total_weight += spk_d_w

    if total_weight > 0:
        merge_tensor /= total_weight

    merged_spk = Speaker.from_tensor(merge_tensor)
    merged_spk.name = "<MIX>"

    return merged_spk


@torch.inference_mode()
@spaces.GPU
def merge_and_test_spk_voice(
    spk_a, spk_a_w, spk_b, spk_b_w, spk_c, spk_c_w, spk_d, spk_d_w, test_text
):
    merged_spk = merge_spk(
        spk_a,
        spk_a_w,
        spk_b,
        spk_b_w,
        spk_c,
        spk_c_w,
        spk_d,
        spk_d_w,
    )
    return tts_generate(
        spk=merged_spk,
        text=test_text,
    )


@torch.inference_mode()
@spaces.GPU
def merge_spk_to_file(
    spk_a,
    spk_a_w,
    spk_b,
    spk_b_w,
    spk_c,
    spk_c_w,
    spk_d,
    spk_d_w,
    speaker_name,
    speaker_gender,
    speaker_desc,
):
    merged_spk = merge_spk(
        spk_a, spk_a_w, spk_b, spk_b_w, spk_c, spk_c_w, spk_d, spk_d_w
    )
    merged_spk.name = speaker_name
    merged_spk.gender = speaker_gender
    merged_spk.desc = speaker_desc

    with tempfile.NamedTemporaryFile(delete=False, suffix=".pt") as tmp_file:
        torch.save(merged_spk, tmp_file)
        tmp_file_path = tmp_file.name

    return tmp_file_path


merge_desc = """
## Speaker Merger

在本面板中,您可以选择多个说话人并指定他们的权重,合成新的语音并进行测试。以下是各个功能的详细说明:

### 1. 选择说话人
您可以从下拉菜单中选择最多四个说话人(A、B、C、D),每个说话人都有一个对应的权重滑块,范围从0到10。权重决定了每个说话人在合成语音中的影响程度。

### 2. 合成语音
在选择好说话人和设置好权重后,您可以在“测试文本”框中输入要测试的文本,然后点击“测试语音”按钮来生成并播放合成的语音。

### 3. 保存说话人
您还可以在右侧的“说话人信息”部分填写新的说话人的名称、性别和描述,并点击“保存说话人”按钮来保存合成的说话人。保存后的说话人文件将显示在“合成说话人”栏中,供下载使用。
"""


# 显示 a b c d 四个选择框,选择一个或多个,然后可以试音,并导出
def create_speaker_panel():
    speakers = get_speakers()

    speaker_names = ["None"] + [get_speaker_show_name(speaker) for speaker in speakers]

    with gr.Tabs():
        with gr.TabItem("Merger"):
            gr.Markdown(merge_desc)

            with gr.Row():
                with gr.Column(scale=5):
                    with gr.Row():
                        with gr.Group():
                            spk_a = gr.Dropdown(
                                choices=speaker_names, value="None", label="Speaker A"
                            )
                            spk_a_w = gr.Slider(
                                value=1, minimum=0, maximum=10, step=1, label="Weight A"
                            )

                        with gr.Group():
                            spk_b = gr.Dropdown(
                                choices=speaker_names, value="None", label="Speaker B"
                            )
                            spk_b_w = gr.Slider(
                                value=1, minimum=0, maximum=10, step=1, label="Weight B"
                            )

                        with gr.Group():
                            spk_c = gr.Dropdown(
                                choices=speaker_names, value="None", label="Speaker C"
                            )
                            spk_c_w = gr.Slider(
                                value=1, minimum=0, maximum=10, step=1, label="Weight C"
                            )

                        with gr.Group():
                            spk_d = gr.Dropdown(
                                choices=speaker_names, value="None", label="Speaker D"
                            )
                            spk_d_w = gr.Slider(
                                value=1, minimum=0, maximum=10, step=1, label="Weight D"
                            )

                    with gr.Row():
                        with gr.Column(scale=3):
                            with gr.Group():
                                gr.Markdown("🎤Test voice")
                                with gr.Row():
                                    test_voice_btn = gr.Button(
                                        "Test Voice", variant="secondary"
                                    )

                                    with gr.Column(scale=4):
                                        test_text = gr.Textbox(
                                            label="Test Text",
                                            placeholder="Please input test text",
                                            value="说话人合并测试 123456789 [uv_break] ok, test done [lbreak]",
                                        )

                                        output_audio = gr.Audio(label="Output Audio")

                with gr.Column(scale=1):
                    with gr.Group():
                        gr.Markdown("🗃️Save to file")

                        speaker_name = gr.Textbox(
                            label="Name", value="forge_speaker_merged"
                        )
                        speaker_gender = gr.Textbox(label="Gender", value="*")
                        speaker_desc = gr.Textbox(
                            label="Description", value="merged speaker"
                        )

                        save_btn = gr.Button("Save Speaker", variant="primary")

                        merged_spker = gr.File(
                            label="Merged Speaker", interactive=False, type="binary"
                        )

            test_voice_btn.click(
                merge_and_test_spk_voice,
                inputs=[
                    spk_a,
                    spk_a_w,
                    spk_b,
                    spk_b_w,
                    spk_c,
                    spk_c_w,
                    spk_d,
                    spk_d_w,
                    test_text,
                ],
                outputs=[output_audio],
            )

            save_btn.click(
                merge_spk_to_file,
                inputs=[
                    spk_a,
                    spk_a_w,
                    spk_b,
                    spk_b_w,
                    spk_c,
                    spk_c_w,
                    spk_d,
                    spk_d_w,
                    speaker_name,
                    speaker_gender,
                    speaker_desc,
                ],
                outputs=[merged_spker],
            )