Spaces:
Sleeping
Sleeping
File size: 5,351 Bytes
da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 da8d589 374f426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from typing import Union
import numpy as np
from modules.Enhancer.ResembleEnhance import load_enhancer
from modules.devices import devices
from modules.synthesize_audio import synthesize_audio
from modules.hf import spaces
from modules.webui import webui_config
import torch
from modules.ssml_parser.SSMLParser import create_ssml_parser, SSMLBreak, SSMLSegment
from modules.SynthesizeSegments import SynthesizeSegments, combine_audio_segments
from modules.speaker import speaker_mgr, Speaker
from modules.data import styles_mgr
from modules.api.utils import calc_spk_style
from modules.normalization import text_normalize
from modules import refiner
from modules.utils import audio
from modules.SentenceSplitter import SentenceSplitter
def get_speakers():
return speaker_mgr.list_speakers()
def get_styles():
return styles_mgr.list_items()
def load_spk_info(file):
if file is None:
return "empty"
try:
spk: Speaker = Speaker.from_file(file)
infos = spk.to_json()
return f"""
- name: {infos.name}
- gender: {infos.gender}
- describe: {infos.describe}
""".strip()
except:
return "load failed"
def segments_length_limit(
segments: list[Union[SSMLBreak, SSMLSegment]], total_max: int
) -> list[Union[SSMLBreak, SSMLSegment]]:
ret_segments = []
total_len = 0
for seg in segments:
if isinstance(seg, SSMLBreak):
ret_segments.append(seg)
continue
total_len += len(seg["text"])
if total_len > total_max:
break
ret_segments.append(seg)
return ret_segments
@torch.inference_mode()
@spaces.GPU
def apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance):
audio_data = torch.from_numpy(audio_data).float().squeeze().cpu()
if enable_denoise or enable_enhance:
enhancer = load_enhancer(devices.device)
if enable_denoise:
audio_data, sr = enhancer.denoise(audio_data, sr, devices.device)
if enable_enhance:
audio_data, sr = enhancer.enhance(
audio_data,
sr,
devices.device,
tau=0.9,
nfe=64,
solver="euler",
lambd=0.5,
)
audio_data = audio_data.cpu().numpy()
return audio_data, int(sr)
@torch.inference_mode()
@spaces.GPU
def synthesize_ssml(ssml: str, batch_size=4):
try:
batch_size = int(batch_size)
except Exception:
batch_size = 8
ssml = ssml.strip()
if ssml == "":
return None
parser = create_ssml_parser()
segments = parser.parse(ssml)
max_len = webui_config.ssml_max
segments = segments_length_limit(segments, max_len)
if len(segments) == 0:
return None
synthesize = SynthesizeSegments(batch_size=batch_size)
audio_segments = synthesize.synthesize_segments(segments)
combined_audio = combine_audio_segments(audio_segments)
return audio.pydub_to_np(combined_audio)
@torch.inference_mode()
@spaces.GPU
def tts_generate(
text,
temperature=0.3,
top_p=0.7,
top_k=20,
spk=-1,
infer_seed=-1,
use_decoder=True,
prompt1="",
prompt2="",
prefix="",
style="",
disable_normalize=False,
batch_size=4,
enable_enhance=False,
enable_denoise=False,
spk_file=None,
):
try:
batch_size = int(batch_size)
except Exception:
batch_size = 4
max_len = webui_config.tts_max
text = text.strip()[0:max_len]
if text == "":
return None
if style == "*auto":
style = None
if isinstance(top_k, float):
top_k = int(top_k)
params = calc_spk_style(spk=spk, style=style)
spk = params.get("spk", spk)
infer_seed = infer_seed or params.get("seed", infer_seed)
temperature = temperature or params.get("temperature", temperature)
prefix = prefix or params.get("prefix", prefix)
prompt1 = prompt1 or params.get("prompt1", "")
prompt2 = prompt2 or params.get("prompt2", "")
infer_seed = np.clip(infer_seed, -1, 2**32 - 1, out=None, dtype=np.float64)
infer_seed = int(infer_seed)
if not disable_normalize:
text = text_normalize(text)
if spk_file:
spk = Speaker.from_file(spk_file)
sample_rate, audio_data = synthesize_audio(
text=text,
temperature=temperature,
top_P=top_p,
top_K=top_k,
spk=spk,
infer_seed=infer_seed,
use_decoder=use_decoder,
prompt1=prompt1,
prompt2=prompt2,
prefix=prefix,
batch_size=batch_size,
)
audio_data, sample_rate = apply_audio_enhance(
audio_data, sample_rate, enable_denoise, enable_enhance
)
audio_data = audio.audio_to_int16(audio_data)
return sample_rate, audio_data
@torch.inference_mode()
@spaces.GPU
def refine_text(text: str, prompt: str):
text = text_normalize(text)
return refiner.refine_text(text, prompt=prompt)
@torch.inference_mode()
@spaces.GPU
def split_long_text(long_text_input):
spliter = SentenceSplitter(webui_config.spliter_threshold)
sentences = spliter.parse(long_text_input)
sentences = [text_normalize(s) for s in sentences]
data = []
for i, text in enumerate(sentences):
data.append([i, text, len(text)])
return data
|