chethu commited on
Commit
2e7bac9
·
verified ·
1 Parent(s): 7e17841

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -27
app.py CHANGED
@@ -1,32 +1,27 @@
1
- import streamlit as st
2
- from PIL import Image
3
- from PIL import Image, ImageDraw
4
- from image_whisper_helper import summarize_predictions_natural_language, render_results_in_image
5
  from transformers import pipeline
6
- from tokenizers import Tokenizer, Encoding
7
- from tokenizers import decoders
8
- from tokenizers import models
9
- from tokenizers import normalizers
10
- from tokenizers import pre_tokenizers
11
- from tokenizers import processors
12
- import io
13
- import matplotlib.pyplot as plt
14
- import requests
15
- import inflect
16
- from PIL import Image
17
- from predictions import get_predictions # Replace 'your_module' with the name of the module where your function is defined
18
 
19
- def main():
20
- st.title("Object Detection App")
 
 
 
21
 
22
- uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
 
 
 
 
23
 
24
- if uploaded_image is not None:
25
- processed_image, text, audio = get_predictions(uploaded_image)
 
 
 
 
 
 
 
26
 
27
- st.image(processed_image, caption='Processed Image', use_column_width=True)
28
- st.write(f"Predictions: {text}")
29
- st.audio(audio, format='audio/wav')
30
-
31
- if __name__ == '__main__':
32
- main()
 
1
+ import gradio as gr
 
 
 
2
  from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ # Load the image-to-text pipeline
5
+ image_to_text_pipelines = {
6
+ "Salesforce/blip-image-captioning-base": pipeline("image-to-text", model="Salesforce/blip-image-captioning-base"),
7
+ # Add more models if needed
8
+ }
9
 
10
+ def generate_caption(input_image, model_name="Salesforce/blip-image-captioning-base"):
11
+ # Generate caption for the input image using the selected model
12
+ image_to_text_pipeline = image_to_text_pipelines[model_name]
13
+ caption = image_to_text_pipeline(input_image)[0]['generated_text']
14
+ return caption
15
 
16
+ # Interface for launching the model
17
+ interface = gr.Interface(
18
+ fn=generate_caption,
19
+ inputs=gr.Image(type='pil', label="Input Image"),
20
+ outputs="text",
21
+ title="Image Captioning Model",
22
+ description="This model generates captions for images.",
23
+ theme="default",
24
+ )
25
 
26
+ # Launch the interface
27
+ interface.launch()