Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 7200 # limit to 2 hour YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def chunks_to_srt(chunks): | |
srt_format = "" | |
for i, chunk in enumerate(chunks, 1): | |
start_time, end_time = chunk['timestamp'] | |
start_time_hms = "{:02}:{:02}:{:02},{:03}".format(int(start_time // 3600), int((start_time % 3600) // 60), int(start_time % 60), int((start_time % 1) * 1000)) | |
end_time_hms = "{:02}:{:02}:{:02},{:03}".format(int(end_time // 3600), int((end_time % 3600) // 60), int(end_time % 60), int((end_time % 1) * 1000)) | |
srt_format += f"{i}\n{start_time_hms} --> {end_time_hms}\n{chunk['text']}\n\n" | |
return srt_format | |
def transcribe(inputs, task, return_timestamps, language): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
# Map the language names to their corresponding codes | |
language_codes = {"English": "en", "Korean": "ko", "Japanese": "ja"} | |
language_code = language_codes.get(language, "en") # Default to "en" if the language is not found | |
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": f"<|{language_code}|>"}, return_timestamps=return_timestamps) | |
if return_timestamps: | |
return chunks_to_srt(result['chunks']) | |
else: | |
return result['text'] | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration_string"] | |
file_h_m_s = file_length.split(":") | |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
if len(file_h_m_s) == 1: | |
file_h_m_s.insert(0, 0) | |
if len(file_h_m_s) == 2: | |
file_h_m_s.insert(0, 0) | |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def yt_transcribe(yt_url, task, return_timestamps, language, max_filesize=75.0): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
# Map the language names to their corresponding codes | |
language_codes = {"English": "en", "Korean": "ko", "Japanese": "ja"} | |
language_code = language_codes.get(language, "en") # Default to "en" if the language is not found | |
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": f"<|{language_code}|>"}, return_timestamps=return_timestamps) | |
if return_timestamps: | |
return html_embed_str, chunks_to_srt(result['chunks']) | |
else: | |
return html_embed_str, result['text'] | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
gr.inputs.Checkbox(label="Return timestamps"), | |
gr.inputs.Dropdown(choices=["English", "Korean", "Japanese"], label="Language"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Large V3: Transcribe Audio", | |
description=( | |
"\n\n" | |
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>" | |
), | |
allow_flagging="never", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
gr.inputs.Checkbox(label="Return timestamps"), | |
gr.inputs.Dropdown(choices=["English", "Korean", "Japanese"], label="Language"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Large V3: Transcribe Audio File", | |
description=( | |
"\n\n" | |
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>" | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
gr.inputs.Checkbox(label="Return timestamps"), | |
gr.inputs.Dropdown(choices=["English", "Korean", "Japanese"], label="Language"), | |
], | |
outputs=["html", "text"], | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Large V3: Transcribe YouTube", | |
description=( | |
"\n\n" | |
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>" | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) | |
demo.launch(enable_queue=True) | |