add compel support
Browse files- app.py +12 -6
- requirements.txt +2 -1
app.py
CHANGED
@@ -7,8 +7,9 @@ import torch
|
|
7 |
from typing import List
|
8 |
from diffusers.utils import numpy_to_pil
|
9 |
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
|
10 |
-
from diffusers.pipelines.wuerstchen import WuerstchenPrior,
|
11 |
from previewer.modules import Previewer
|
|
|
12 |
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
13 |
|
14 |
DESCRIPTION = "# Würstchen"
|
@@ -19,7 +20,7 @@ if not torch.cuda.is_available():
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
21 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
22 |
-
USE_TORCH_COMPILE =
|
23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
24 |
PREVIEW_IMAGES = True
|
25 |
|
@@ -51,6 +52,7 @@ if torch.cuda.is_available():
|
|
51 |
else:
|
52 |
previewer = None
|
53 |
callback_prior = None
|
|
|
54 |
else:
|
55 |
prior_pipeline = None
|
56 |
decoder_pipeline = None
|
@@ -78,12 +80,16 @@ def generate(
|
|
78 |
) -> PIL.Image.Image:
|
79 |
generator = torch.Generator().manual_seed(seed)
|
80 |
|
|
|
|
|
|
|
|
|
81 |
prior_output = prior_pipeline(
|
82 |
-
|
83 |
height=height,
|
84 |
width=width,
|
85 |
-
timesteps=
|
86 |
-
|
87 |
guidance_scale=prior_guidance_scale,
|
88 |
num_images_per_prompt=num_images_per_prompt,
|
89 |
generator=generator,
|
@@ -91,7 +97,7 @@ def generate(
|
|
91 |
)
|
92 |
|
93 |
if PREVIEW_IMAGES:
|
94 |
-
for _ in range(len(
|
95 |
r = next(prior_output)
|
96 |
if isinstance(r, list):
|
97 |
yield r
|
|
|
7 |
from typing import List
|
8 |
from diffusers.utils import numpy_to_pil
|
9 |
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
|
10 |
+
from diffusers.pipelines.wuerstchen import WuerstchenPrior, DEFAULT_STAGE_C_TIMESTEPS
|
11 |
from previewer.modules import Previewer
|
12 |
+
from compel import Compel
|
13 |
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
14 |
|
15 |
DESCRIPTION = "# Würstchen"
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
22 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
23 |
+
USE_TORCH_COMPILE = False
|
24 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
25 |
PREVIEW_IMAGES = True
|
26 |
|
|
|
52 |
else:
|
53 |
previewer = None
|
54 |
callback_prior = None
|
55 |
+
compel_proc = Compel(tokenizer=prior_pipeline.tokenizer, text_encoder=prior_pipeline.text_encoder)
|
56 |
else:
|
57 |
prior_pipeline = None
|
58 |
decoder_pipeline = None
|
|
|
80 |
) -> PIL.Image.Image:
|
81 |
generator = torch.Generator().manual_seed(seed)
|
82 |
|
83 |
+
print("Running compel")
|
84 |
+
prompt_embeds = compel_proc(prompt)
|
85 |
+
negative_prompt_embeds = compel_proc(negative_prompt)
|
86 |
+
|
87 |
prior_output = prior_pipeline(
|
88 |
+
prompt_embeds=prompt_embeds,
|
89 |
height=height,
|
90 |
width=width,
|
91 |
+
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
|
92 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
93 |
guidance_scale=prior_guidance_scale,
|
94 |
num_images_per_prompt=num_images_per_prompt,
|
95 |
generator=generator,
|
|
|
97 |
)
|
98 |
|
99 |
if PREVIEW_IMAGES:
|
100 |
+
for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
|
101 |
r = next(prior_output)
|
102 |
if isinstance(r, list):
|
103 |
yield r
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ gradio==3.42.0
|
|
4 |
invisible-watermark==0.2.0
|
5 |
Pillow==10.0.0
|
6 |
torch==2.0.1
|
7 |
-
transformers==4.32.1
|
|
|
|
4 |
invisible-watermark==0.2.0
|
5 |
Pillow==10.0.0
|
6 |
torch==2.0.1
|
7 |
+
transformers==4.32.1
|
8 |
+
compel
|