File size: 4,560 Bytes
a9cbf7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42b8f89
a9cbf7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42b8f89
a9cbf7c
 
ad9de9f
42b8f89
b537766
a9cbf7c
 
 
 
 
 
8e4f8f7
a9cbf7c
 
 
 
 
 
 
42b8f89
a9cbf7c
 
 
 
 
 
 
 
 
b537766
a9cbf7c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import streamlit as st
from pytube import YouTube
from pytube import extract
import cv2
from PIL import Image
import clip as openai_clip
import torch
import math
import SessionState
from humanfriendly import format_timespan

def fetch_video(url):
  yt = YouTube(url)
  streams = yt.streams.filter(adaptive=True, subtype="mp4", resolution="360p", only_video=True)
  length = yt.length
  if length >= 300:
    st.error("Please find a YouTube video shorter than 5 minutes. Sorry about this, the server capacity is limited for the time being.")
    st.stop()
  video = streams[0]
  return video, video.url

@st.cache()
def extract_frames(video):
  frames = []
  capture = cv2.VideoCapture(video)
  fps = capture.get(cv2.CAP_PROP_FPS)
  current_frame = 0
  while capture.isOpened():
    ret, frame = capture.read()
    if ret == True:
      frames.append(Image.fromarray(frame[:, :, ::-1]))
    else:
      break
    current_frame += N
    capture.set(cv2.CAP_PROP_POS_FRAMES, current_frame)
  return frames, fps

@st.cache()
def encode_frames(video_frames):
  batch_size = 256
  batches = math.ceil(len(video_frames) / batch_size)
  video_features = torch.empty([0, 512], dtype=torch.float16).to(device)
  for i in range(batches):
    batch_frames = video_frames[i*batch_size : (i+1)*batch_size]
    batch_preprocessed = torch.stack([preprocess(frame) for frame in batch_frames]).to(device)
    with torch.no_grad():
      batch_features = model.encode_image(batch_preprocessed)
      batch_features /= batch_features.norm(dim=-1, keepdim=True)
    video_features = torch.cat((video_features, batch_features))
  return video_features

def img_to_bytes(img):
  img_byte_arr = io.BytesIO()
  img.save(img_byte_arr, format='JPEG')
  img_byte_arr = img_byte_arr.getvalue()
  return img_byte_arr

def display_results(best_photo_idx):
  st.markdown("**Top-5 matching results**")
  result_arr = []
  for frame_id in best_photo_idx:
    result = ss.video_frames[frame_id]
    st.image(result)
    seconds = round(frame_id.cpu().numpy()[0] * N / ss.fps)
    result_arr.append(seconds)
    time = format_timespan(seconds)
    st.markdown("Seen at [" + str(time) + "](" + url + "&t=" + str(seconds) + "s) into the video.")
  return result_arr

def text_search(search_query, display_results_count=5):
  with torch.no_grad():
    text_features = model.encode_text(openai_clip.tokenize(search_query).to(device))
    text_features /= text_features.norm(dim=-1, keepdim=True)
  similarities = (100.0 * ss.video_features @ text_features.T)
  values, best_photo_idx = similarities.topk(display_results_count, dim=0)
  result_arr = display_results(best_photo_idx)
  return result_arr

st.set_page_config(page_title="Which Frame?", page_icon = "πŸ”", layout = "centered", initial_sidebar_state = "collapsed")

hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            * {font-family: Avenir;}
            .css-gma2qf {display: flex; justify-content: center; font-size: 42px; font-weight: bold;}
            a:link {text-decoration: none;}
            a:hover {text-decoration: none;}
            .st-ba {font-family: Avenir;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

ss = SessionState.get(url=None, id=None, file_name=None, video=None, video_name=None, video_frames=None, video_features=None, fps=None, mode=None, query=None, progress=1)

st.title("Which Frame?")
st.markdown("✨**Semantic**✨ video search.")
st.markdown("For example, which video frame has a person πŸ§‘ with sunglasses πŸ•ΆοΈ and earphones 🎧?")
url = st.text_input("Enter YouTube video URL (Example: https://www.youtube.com/watch?v=sxaTnm_4YMY)")

N = 30

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = openai_clip.load("ViT-B/32", device=device)

if st.button("Process video (please wait a bit)"):
  ss.progress = 1
  ss.video_start_time = 0
  if url:
    ss.video, ss.video_name = fetch_video(url)
    ss.id = extract.video_id(url)
    ss.url = "https://www.youtube.com/watch?v=" + ss.id
  else:
    st.error("Please link to a valid YouTube video")
    st.stop()
  ss.video_frames, ss.fps = extract_frames(ss.video_name)
  ss.video_features = encode_frames(ss.video_frames)
  st.video(ss.url)
  ss.progress = 2

if ss.progress == 2:
  ss.text_query = st.text_input("Enter search query (Example: a person with sunglasses and earphones)")

  if st.button("Submit query"):
    if ss.text_query is not None:
      text_search(ss.text_query)