Spaces:
Running
Running
Add/improve help strings
Browse files
app.py
CHANGED
@@ -36,7 +36,7 @@ generation_mode = st.radio(
|
|
36 |
st.caption(
|
37 |
"In basic mode, we analyze the model's one-step-ahead predictions on the input text. "
|
38 |
"In generation mode, we generate a continuation of the input text (prompt) "
|
39 |
-
"and
|
40 |
)
|
41 |
|
42 |
model_name = st.selectbox(
|
@@ -50,7 +50,15 @@ model_name = st.selectbox(
|
|
50 |
]
|
51 |
)
|
52 |
metric_name = st.radio(
|
53 |
-
"Metric",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
)
|
55 |
|
56 |
tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)
|
@@ -68,7 +76,9 @@ window_len_options = [
|
|
68 |
window_len = st.select_slider(
|
69 |
r"Window size ($c_\text{max}$)",
|
70 |
options=window_len_options,
|
71 |
-
value=min(128, window_len_options[-1])
|
|
|
|
|
72 |
)
|
73 |
# Now figure out how many tokens we are allowed to use:
|
74 |
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
|
|
|
36 |
st.caption(
|
37 |
"In basic mode, we analyze the model's one-step-ahead predictions on the input text. "
|
38 |
"In generation mode, we generate a continuation of the input text (prompt) "
|
39 |
+
"and analyze the model's predictions influencing the generated tokens."
|
40 |
)
|
41 |
|
42 |
model_name = st.selectbox(
|
|
|
50 |
]
|
51 |
)
|
52 |
metric_name = st.radio(
|
53 |
+
"Metric",
|
54 |
+
(["KL divergence"] if not generation_mode else []) + ["NLL loss"],
|
55 |
+
index=0,
|
56 |
+
horizontal=True,
|
57 |
+
help="**KL divergence** is computed between the predictions with the reduced context "
|
58 |
+
"(corresponding to the highlighted token) and the predictions with the full context "
|
59 |
+
"($c_\\text{max}$ tokens). \n"
|
60 |
+
"**NLL loss** is the negative log-likelihood loss (a.k.a. cross entropy) for the target "
|
61 |
+
"token."
|
62 |
)
|
63 |
|
64 |
tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)
|
|
|
76 |
window_len = st.select_slider(
|
77 |
r"Window size ($c_\text{max}$)",
|
78 |
options=window_len_options,
|
79 |
+
value=min(128, window_len_options[-1]),
|
80 |
+
help="The maximum context length $c_\text{max}$ for which we compute the scores. Smaller "
|
81 |
+
"windows are less computationally intensive, allowing for longer inputs."
|
82 |
)
|
83 |
# Now figure out how many tokens we are allowed to use:
|
84 |
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
|