circulartext commited on
Commit
1c83905
1 Parent(s): a830db3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -57
app.py CHANGED
@@ -1,64 +1,43 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
 
 
 
 
 
 
 
59
  ],
 
 
 
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load a text generation pipeline from Hugging Face
5
+ rap_generator = pipeline("text-generation", model="gpt2") # You can use a rap-specific model if available
6
+
7
+ def generate_rap(quantity, style, countries, theme, word_list, freestyle):
8
+ # Format the prompt for the AI model
9
+ prompt = (
10
+ f"{quantity} lines of {style} rap inspired by {' and '.join(countries)} "
11
+ f"about {theme}. Featuring words like {' '.join(word_list)}. "
12
+ f"{'Freestyle' if freestyle else 'Structured'}."
13
+ )
14
+ # Generate rap lyrics using the model
15
+ response = rap_generator(prompt, max_length=50, num_return_sequences=1)
16
+ return response[0]['generated_text']
17
+
18
+ demo = gr.Interface(
19
+ generate_rap,
20
+ [
21
+ gr.Slider(2, 20, value=4, label="Number of Lines", info="Choose the number of lines for your rap."),
22
+ gr.Dropdown(
23
+ ["chill", "hardcore", "freestyle", "battle"], label="Rap Style", info="Select the style of rap."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ),
25
+ gr.CheckboxGroup(["USA", "Japan", "UK", "France"], label="Countries", info="Where's the rap vibe from?"),
26
+ gr.Radio(["love", "struggle", "success", "hustle"], label="Theme", info="What’s the rap about?"),
27
+ gr.Dropdown(
28
+ ["money", "dream", "fight", "night"], value=["money", "fight"], multiselect=True,
29
+ label="Key Words", info="Words to include in the rap."
30
+ ),
31
+ gr.Checkbox(label="Freestyle", info="Make it a freestyle?")
32
  ],
33
+ "text",
34
+ examples=[
35
+ [4, "chill", ["USA"], "love", ["money", "dream"], True],
36
+ [10, "hardcore", ["UK", "Japan"], "hustle", ["fight", "night"], False],
37
+ [8, "battle", ["France"], "struggle", ["dream"], True],
38
+ ]
39
  )
40
 
 
41
  if __name__ == "__main__":
42
  demo.launch()
43
+