Spaces:
Running
Running
File size: 10,052 Bytes
e94a434 146f20f e94a434 b21d736 e94a434 715fd06 e7677fd b21d736 e94a434 715fd06 e94a434 715fd06 e94a434 715fd06 b21d736 715fd06 b21d736 715fd06 e94a434 ded4b0f e94a434 e7677fd 44dbf52 e7677fd e94a434 832fdde 715fd06 832fdde 715fd06 e7677fd 715fd06 e94a434 715fd06 44dbf52 715fd06 e94a434 44dbf52 e94a434 715fd06 44dbf52 715fd06 44dbf52 715fd06 832fdde 715fd06 e94a434 832fdde e94a434 b21d736 715fd06 e94a434 715fd06 e94a434 715fd06 832fdde 715fd06 e94a434 715fd06 f4b2839 715fd06 e94a434 715fd06 e94a434 715fd06 e94a434 ded4b0f e94a434 e7677fd f4b2839 e7677fd e94a434 715fd06 832fdde 715fd06 e94a434 715fd06 e94a434 715fd06 e94a434 e7677fd 715fd06 e7677fd e94a434 715fd06 832fdde 715fd06 e94a434 63c41d3 e94a434 715fd06 e94a434 715fd06 e94a434 e7677fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# coding=utf-8
# Copyright 2023 The GlotLID Authors.
# Lint as: python3
# This space is built based on AMR-KELEG/ALDi space.
# GlotLID Space
import string
import constants
import pandas as pd
import streamlit as st
from huggingface_hub import hf_hub_download
from GlotScript import get_script_predictor
import matplotlib.pyplot as plt
import fasttext
import altair as alt
from altair import X, Y, Scale
import base64
import json
import os
import re
@st.cache_resource
def load_sp():
sp = get_script_predictor()
return sp
sp = load_sp()
def get_script(text):
"""Get the writing systems of given text.
Args:
text: The text to be preprocessed.
Returns:
The main script and list of all scripts.
"""
res = sp(text)
main_script = res[0] if res[0] else 'Zyyy'
all_scripts_dict = res[2]['details']
if all_scripts_dict:
all_scripts = list(all_scripts_dict.keys())
else:
all_scripts = 'Zyyy'
for ws in all_scripts:
if ws in ['Kana', 'Hrkt', 'Hani', 'Hira']:
all_scripts.append('Jpan')
all_scripts = list(set(all_scripts))
return main_script, all_scripts
def preprocess_text(text):
"""Apply preprocessing to the given text.
Args:
text: Thetext to be preprocessed.
Returns:
The preprocessed text.
"""
# remove \n
text = text.replace('\n', ' ')
# get rid of characters that are ubiquitous
replace_by = " "
replacement_map = {
ord(c): replace_by
for c in ':•#{|}' + string.digits
}
text = text.translate(replacement_map)
# make multiple space one space
text = re.sub(r'\s+', ' ', text)
# strip the text
text = text.strip()
return text
@st.cache_data
def language_names(json_path):
with open(json_path, 'r') as json_file:
data = json.load(json_file)
return data
label2name = language_names("assets/language_names.json")
def get_name(label):
"""Get the name of language from label"""
iso_3 = label.split('_')[0]
name = label2name[iso_3]
return name
@st.cache_data
def render_svg(svg):
"""Renders the given svg string."""
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}", width="40%"/> </p>'
c = st.container()
c.write(html, unsafe_allow_html=True)
@st.cache_data
def render_metadata():
"""Renders the metadata."""
html = r"""<p align="center">
<a href="https://huggingface.co/cis-lmu/glotlid"><img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-8A2BE2"></a>
<a href="https://github.com/cisnlp/GlotLID"><img alt="GitHub" src="https://img.shields.io/badge/%F0%9F%93%A6%20GitHub-orange"></a>
<a href="https://github.com/cisnlp/GlotLID/blob/main/LICENSE"><img alt="GitHub license" src="https://img.shields.io/github/license/cisnlp/GlotLID?logoColor=blue"></a>
<a href="https://github.com/cisnlp/GlotLID"><img alt="GitHub stars" src="https://img.shields.io/github/stars/cisnlp/GlotLID"></a>
<a href="https://arxiv.org/abs/2310.16248"><img alt="arXiv" src="https://img.shields.io/badge/arXiv-2310.16248-b31b1b.svg"></a>
</p>"""
c = st.container()
c.write(html, unsafe_allow_html=True)
@st.cache_data
def citation():
"""Renders the metadata."""
_CITATION = """
@inproceedings{
kargaran2023glotlid,
title={GlotLID: Language Identification for Low-Resource Languages},
author={Kargaran, Amir Hossein and Imani, Ayyoob and Yvon, Fran{\c{c}}ois and Sch{\"u}tze, Hinrich},
booktitle={The 2023 Conference on Empirical Methods in Natural Language Processing},
year={2023},
url={https://openreview.net/forum?id=dl4e3EBz5j}
}"""
st.code(_CITATION, language="python", line_numbers=False)
@st.cache_data
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv(index=None).encode("utf-8")
@st.cache_resource
def load_GlotLID(model_name, file_name):
model_path = hf_hub_download(repo_id=model_name, filename=file_name)
model = fasttext.load_model(model_path)
return model
model_1 = load_GlotLID(constants.MODEL_NAME, "model_v1.bin")
model_2 = load_GlotLID(constants.MODEL_NAME, "model_v2.bin")
model_3 = load_GlotLID(constants.MODEL_NAME, "model_v3.bin")
# @st.cache_resource
def plot(label, prob):
ORANGE_COLOR = "#FF8000"
BLACK_COLOR = "#31333F"
fig, ax = plt.subplots(figsize=(8, 1))
fig.patch.set_facecolor("none")
ax.set_facecolor("none")
ax.spines["left"].set_color(BLACK_COLOR)
ax.spines["bottom"].set_color(BLACK_COLOR)
ax.tick_params(axis="x", colors=BLACK_COLOR)
ax.spines[["right", "top"]].set_visible(False)
ax.barh(y=[0], width=[prob], color=ORANGE_COLOR)
ax.set_xlim(0, 1)
ax.set_ylim(-1, 1)
ax.set_title(f"Label: {label}, Language: {get_name(label)}", color=BLACK_COLOR)
ax.get_yaxis().set_visible(False)
ax.set_xlabel("Confidence", color=BLACK_COLOR)
st.pyplot(fig)
def compute(sentences, version = 'v3'):
"""Computes the language probablities and labels for the given sentences.
Args:
sentences: A list of sentences.
Returns:
A list of language probablities and labels for the given sentences.
"""
progress_text = "Computing Language..."
model_choice = model_3 if version == 'v3' else (model_2 if version == 'v2' else model_1)
my_bar = st.progress(0, text=progress_text)
probs = []
labels = []
sentences = [preprocess_text(sent) for sent in sentences]
for index, sent in enumerate(sentences):
output = model_choice.predict(sent)
output_label = output[0][0].split('__')[-1]
output_prob = max(min(output[1][0], 1), 0)
output_label_language = output_label.split('_')[0]
# script control
if version in ['v2', 'v3'] and output_label_language!= 'zxx':
main_script, all_scripts = get_script(sent)
output_label_script = output_label.split('_')[1]
if output_label_script not in all_scripts:
output_label_script = main_script
output_label = f"und_{output_label_script}"
output_prob = 1.0
labels = labels + [output_label]
probs = probs + [output_prob]
my_bar.progress(
min((index) / len(sentences), 1),
text=progress_text,
)
my_bar.empty()
return probs, labels
st.markdown("[![Duplicate Space](https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14)](https://huggingface.co/spaces/cis-lmu/glotlid-space?duplicate=true)")
render_svg(open("assets/glotlid_logo.svg").read())
render_metadata()
st.markdown("**GlotLID** is an open-source language identification model with support for more than **2000 labels (V3)**.")
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])
with tab1:
version = st.radio(
"Choose model",
["v1", "v2", "v3"],
captions=["GlotLID version 1", "GlotLID version 2", "GlotLID version 3 (More languages, better quality data)"],
index = 2,
key = 'version_tab1',
horizontal = True
)
sent = st.text_input(
"Sentence:", placeholder="Enter a sentence.", on_change=None
)
# TODO: Check if this is needed!
clicked = st.button("Submit")
if sent:
probs, labels = compute([sent], version=version)
prob = probs[0]
label = labels[0]
# Check if the file exists
if not os.path.exists('logs.txt'):
with open('logs.txt', 'w') as file:
pass
print(f"{sent}, {label}: {prob}")
with open("logs.txt", "a") as f:
f.write(f"{sent}, {label}: {prob}\n")
# plot
plot(label, prob)
with tab2:
version = st.radio(
"Choose model",
["v1", "v2", "v3"],
captions=["GlotLID version 1", "GlotLID version 2", "GlotLID version 3 (More languages, better quality data)" ],
index = 2,
key = 'version_tab2',
horizontal = True
)
file = st.file_uploader("Upload a file", type=["txt"])
if file is not None:
df = pd.read_csv(file, sep="¦\t¦", header=None, engine='python')
df.columns = ["Sentence"]
df.reset_index(drop=True, inplace=True)
# TODO: Run the model
df['Prob'], df["Label"] = compute(df["Sentence"].tolist(), version= version)
df['Language'] = df["Label"].apply(get_name)
# A horizontal rule
st.markdown("""---""")
chart = (
alt.Chart(df.reset_index())
.mark_area(color="darkorange", opacity=0.5)
.encode(
x=X(field="index", title="Sentence Index"),
y=Y("Prob", scale=Scale(domain=[0, 1])),
)
)
st.altair_chart(chart.interactive(), use_container_width=True)
col1, col2 = st.columns([4, 1])
with col1:
# Display the output
st.table(
df,
)
with col2:
# Add a download button
csv = convert_df(df)
st.download_button(
label=":file_folder: Download predictions as CSV",
data=csv,
file_name="GlotLID.csv",
mime="text/csv",
)
# citation() |