import subprocess
import requests
import string
import time
import re
import os
import openai
import gradio as gr
def get_content(filepath: str) -> str:
url = string.Template(
"https://raw.githubusercontent.com/huggingface/"
"huggingface_hub/main/docs/source/en/$filepath"
).safe_substitute(filepath=filepath)
response = requests.get(url)
if response.status_code == 200:
content = response.text
return content
else:
raise ValueError("Failed to retrieve content from the URL.", url)
def preprocess_content(content: str) -> str:
# Extract text to translate from document
## ignore top license comment
to_translate = content[content.find('#'):]
## remove code blocks from text
to_translate = re.sub(r'```.*?```', '', to_translate, flags=re.DOTALL)
## remove markdown tables from text
to_translate = re.sub(r'^\|.*\|$\n?', '', to_translate, flags=re.MULTILINE)
## remove empty lines from text
to_translate = re.sub(r'\n\n+', '\n\n', to_translate)
return to_translate
def get_full_prompt(language: str, filepath: str) -> str:
content = get_content(filepath)
to_translate = preprocess_content(content)
prompt = string.Template(
"What do these sentences about Hugging Face Transformers "
"(a machine learning library) mean in $language? "
"Please do not translate the word after a 🤗 emoji "
"as it is a product name.\n```md"
).safe_substitute(language=language)
return '\n'.join([prompt, to_translate.strip(), "```"])
def split_markdown_sections(markdown: str) -> list:
# Find all titles using regular expressions
return re.split(r'^(#+\s+)(.*)$', markdown, flags=re.MULTILINE)[1:]
# format is like [level, title, content, level, title, content, ...]
def get_anchors(divided: list) -> list:
anchors = []
# from https://github.com/huggingface/doc-builder/blob/01b262bae90d66e1150cdbf58c83c02733ed4366/src/doc_builder/build_doc.py#L300-L302
for title in divided[1::3]:
anchor = re.sub(r"[^a-z0-9\s]+", "", title.lower())
anchor = re.sub(r"\s{2,}", " ", anchor.strip()).replace(" ", "-")
anchors.append(f"[[{anchor}]]")
return anchors
def make_scaffold(content: str, to_translate: str) -> string.Template:
scaffold = content
for i, text in enumerate(to_translate.split('\n\n')):
scaffold = scaffold.replace(text, f'$hf_i18n_placeholder{i}', 1)
return string.Template(scaffold)
def fill_scaffold(filepath: str, translated: str) -> list[str]:
content = get_content(filepath)
to_translate = preprocess_content(content)
scaffold = make_scaffold(content, to_translate)
divided = split_markdown_sections(to_translate)
anchors = get_anchors(divided)
translated = split_markdown_sections(translated)
translated[1::3] = [
f"{korean_title} {anchors[i]}"
for i, korean_title in enumerate(translated[1::3])
]
translated = ''.join([
''.join(translated[i*3:i*3+3])
for i in range(len(translated) // 3)
]).split('\n\n')
if (newlines := scaffold.template.count('$hf_i18n_placeholder') - len(translated)):
return [
content,
f"Please {'recover' if newlines > 0 else 'remove'} "
f"{abs(newlines)} incorrectly inserted double newlines."
]
translated_doc = scaffold.safe_substitute({
f"hf_i18n_placeholder{i}": text
for i, text in enumerate(translated)
})
return [content, translated_doc]
def translate_openai(language: str, filepath: str, api_key: str) -> list[str]:
content = get_content(filepath)
return [content, "Please use the web UI for now."]
raise NotImplementedError("Currently debugging output.")
openai.api_key = api_key
prompt = string.Template(
"What do these sentences about Hugging Face Transformers "
"(a machine learning library) mean in $language? "
"Please do not translate the word after a 🤗 emoji "
"as it is a product name.\n```md"
).safe_substitute(language=language)
to_translate = preprocess_content(content)
scaffold = make_scaffold(content, to_translate)
divided = split_markdown_sections(to_translate)
anchors = get_anchors(divided)
sections = [''.join(divided[i*3:i*3+3]) for i in range(len(divided) // 3)]
reply = []
for i, section in enumerate(sections):
chat = openai.ChatCompletion.create(
model = "gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "\n".join([prompt, section, '```'])
},]
)
print(f"{i} out of {len(sections)} complete. Estimated time remaining ~{len(sections) - i} mins")
reply.append(chat.choices[0].message.content)
translated = split_markdown_sections('\n\n'.join(reply))
print(translated[1::3], anchors)
translated[1::3] = [
f"{korean_title} {anchors[i]}"
for i, korean_title in enumerate(translated[1::3])
]
translated = ''.join([
''.join(translated[i*3:i*3+3])
for i in range(len(translated) // 3)
]).split('\n\n')
translated_doc = scaffold.safe_substitute({
f"hf_i18n_placeholder{i}": text
for i, text in enumerate(translated)
})
return translated_doc
demo = gr.Blocks()
with demo:
gr.Markdown(
'\n\n'
'