File size: 10,025 Bytes
6842c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from pymilvus import MilvusClient as Client
from pymilvus import FieldSchema, DataType
import json

from typing import Optional

from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
    MILVUS_URI,
)


class MilvusClient:
    def __init__(self):
        self.collection_prefix = "open_webui"
        self.client = Client(uri=MILVUS_URI)

    def _result_to_get_result(self, result) -> GetResult:
        ids = []
        documents = []
        metadatas = []

        for match in result:
            _ids = []
            _documents = []
            _metadatas = []
            for item in match:
                _ids.append(item.get("id"))
                _documents.append(item.get("data", {}).get("text"))
                _metadatas.append(item.get("metadata"))

            ids.append(_ids)
            documents.append(_documents)
            metadatas.append(_metadatas)

        return GetResult(
            **{
                "ids": ids,
                "documents": documents,
                "metadatas": metadatas,
            }
        )

    def _result_to_search_result(self, result) -> SearchResult:
        ids = []
        distances = []
        documents = []
        metadatas = []

        for match in result:
            _ids = []
            _distances = []
            _documents = []
            _metadatas = []

            for item in match:
                _ids.append(item.get("id"))
                _distances.append(item.get("distance"))
                _documents.append(item.get("entity", {}).get("data", {}).get("text"))
                _metadatas.append(item.get("entity", {}).get("metadata"))

            ids.append(_ids)
            distances.append(_distances)
            documents.append(_documents)
            metadatas.append(_metadatas)

        return SearchResult(
            **{
                "ids": ids,
                "distances": distances,
                "documents": documents,
                "metadatas": metadatas,
            }
        )

    def _create_collection(self, collection_name: str, dimension: int):
        schema = self.client.create_schema(
            auto_id=False,
            enable_dynamic_field=True,
        )
        schema.add_field(
            field_name="id",
            datatype=DataType.VARCHAR,
            is_primary=True,
            max_length=65535,
        )
        schema.add_field(
            field_name="vector",
            datatype=DataType.FLOAT_VECTOR,
            dim=dimension,
            description="vector",
        )
        schema.add_field(field_name="data", datatype=DataType.JSON, description="data")
        schema.add_field(
            field_name="metadata", datatype=DataType.JSON, description="metadata"
        )

        index_params = self.client.prepare_index_params()
        index_params.add_index(
            field_name="vector",
            index_type="HNSW",
            metric_type="COSINE",
            params={"M": 16, "efConstruction": 100},
        )

        self.client.create_collection(
            collection_name=f"{self.collection_prefix}_{collection_name}",
            schema=schema,
            index_params=index_params,
        )

    def has_collection(self, collection_name: str) -> bool:
        # Check if the collection exists based on the collection name.
        collection_name = collection_name.replace("-", "_")
        return self.client.has_collection(
            collection_name=f"{self.collection_prefix}_{collection_name}"
        )

    def delete_collection(self, collection_name: str):
        # Delete the collection based on the collection name.
        collection_name = collection_name.replace("-", "_")
        return self.client.drop_collection(
            collection_name=f"{self.collection_prefix}_{collection_name}"
        )

    def search(
        self, collection_name: str, vectors: list[list[float | int]], limit: int
    ) -> Optional[SearchResult]:
        # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
        collection_name = collection_name.replace("-", "_")
        result = self.client.search(
            collection_name=f"{self.collection_prefix}_{collection_name}",
            data=vectors,
            limit=limit,
            output_fields=["data", "metadata"],
        )

        return self._result_to_search_result(result)

    def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
        # Construct the filter string for querying
        collection_name = collection_name.replace("-", "_")
        if not self.has_collection(collection_name):
            return None

        filter_string = " && ".join(
            [
                f'metadata["{key}"] == {json.dumps(value)}'
                for key, value in filter.items()
            ]
        )

        max_limit = 16383  # The maximum number of records per request
        all_results = []

        if limit is None:
            limit = float("inf")  # Use infinity as a placeholder for no limit

        # Initialize offset and remaining to handle pagination
        offset = 0
        remaining = limit

        try:
            # Loop until there are no more items to fetch or the desired limit is reached
            while remaining > 0:
                print("remaining", remaining)
                current_fetch = min(
                    max_limit, remaining
                )  # Determine how many items to fetch in this iteration

                results = self.client.query(
                    collection_name=f"{self.collection_prefix}_{collection_name}",
                    filter=filter_string,
                    output_fields=["*"],
                    limit=current_fetch,
                    offset=offset,
                )

                if not results:
                    break

                all_results.extend(results)
                results_count = len(results)
                remaining -= (
                    results_count  # Decrease remaining by the number of items fetched
                )
                offset += results_count

                # Break the loop if the results returned are less than the requested fetch count
                if results_count < current_fetch:
                    break

            print(all_results)
            return self._result_to_get_result([all_results])
        except Exception as e:
            print(e)
            return None

    def get(self, collection_name: str) -> Optional[GetResult]:
        # Get all the items in the collection.
        collection_name = collection_name.replace("-", "_")
        result = self.client.query(
            collection_name=f"{self.collection_prefix}_{collection_name}",
            filter='id != ""',
        )
        return self._result_to_get_result([result])

    def insert(self, collection_name: str, items: list[VectorItem]):
        # Insert the items into the collection, if the collection does not exist, it will be created.
        collection_name = collection_name.replace("-", "_")
        if not self.client.has_collection(
            collection_name=f"{self.collection_prefix}_{collection_name}"
        ):
            self._create_collection(
                collection_name=collection_name, dimension=len(items[0]["vector"])
            )

        return self.client.insert(
            collection_name=f"{self.collection_prefix}_{collection_name}",
            data=[
                {
                    "id": item["id"],
                    "vector": item["vector"],
                    "data": {"text": item["text"]},
                    "metadata": item["metadata"],
                }
                for item in items
            ],
        )

    def upsert(self, collection_name: str, items: list[VectorItem]):
        # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
        collection_name = collection_name.replace("-", "_")
        if not self.client.has_collection(
            collection_name=f"{self.collection_prefix}_{collection_name}"
        ):
            self._create_collection(
                collection_name=collection_name, dimension=len(items[0]["vector"])
            )

        return self.client.upsert(
            collection_name=f"{self.collection_prefix}_{collection_name}",
            data=[
                {
                    "id": item["id"],
                    "vector": item["vector"],
                    "data": {"text": item["text"]},
                    "metadata": item["metadata"],
                }
                for item in items
            ],
        )

    def delete(
        self,
        collection_name: str,
        ids: Optional[list[str]] = None,
        filter: Optional[dict] = None,
    ):
        # Delete the items from the collection based on the ids.
        collection_name = collection_name.replace("-", "_")
        if ids:
            return self.client.delete(
                collection_name=f"{self.collection_prefix}_{collection_name}",
                ids=ids,
            )
        elif filter:
            # Convert the filter dictionary to a string using JSON_CONTAINS.
            filter_string = " && ".join(
                [
                    f'metadata["{key}"] == {json.dumps(value)}'
                    for key, value in filter.items()
                ]
            )

            return self.client.delete(
                collection_name=f"{self.collection_prefix}_{collection_name}",
                filter=filter_string,
            )

    def reset(self):
        # Resets the database. This will delete all collections and item entries.
        collection_names = self.client.list_collections()
        for collection_name in collection_names:
            if collection_name.startswith(self.collection_prefix):
                self.client.drop_collection(collection_name=collection_name)