File size: 14,151 Bytes
6842c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from typing import Optional, List, Dict, Any
from sqlalchemy import (
    cast,
    column,
    create_engine,
    Column,
    Integer,
    MetaData,
    select,
    text,
    Text,
    values,
)
from sqlalchemy.sql import true
from sqlalchemy.pool import NullPool

from sqlalchemy.orm import declarative_base, scoped_session, sessionmaker
from sqlalchemy.dialects.postgresql import JSONB, array
from pgvector.sqlalchemy import Vector
from sqlalchemy.ext.mutable import MutableDict

from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import PGVECTOR_DB_URL, PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH

VECTOR_LENGTH = PGVECTOR_INITIALIZE_MAX_VECTOR_LENGTH
Base = declarative_base()


class DocumentChunk(Base):
    __tablename__ = "document_chunk"

    id = Column(Text, primary_key=True)
    vector = Column(Vector(dim=VECTOR_LENGTH), nullable=True)
    collection_name = Column(Text, nullable=False)
    text = Column(Text, nullable=True)
    vmetadata = Column(MutableDict.as_mutable(JSONB), nullable=True)


class PgvectorClient:
    def __init__(self) -> None:

        # if no pgvector uri, use the existing database connection
        if not PGVECTOR_DB_URL:
            from open_webui.internal.db import Session

            self.session = Session
        else:
            engine = create_engine(
                PGVECTOR_DB_URL, pool_pre_ping=True, poolclass=NullPool
            )
            SessionLocal = sessionmaker(
                autocommit=False, autoflush=False, bind=engine, expire_on_commit=False
            )
            self.session = scoped_session(SessionLocal)

        try:
            # Ensure the pgvector extension is available
            self.session.execute(text("CREATE EXTENSION IF NOT EXISTS vector;"))

            # Check vector length consistency
            self.check_vector_length()

            # Create the tables if they do not exist
            # Base.metadata.create_all requires a bind (engine or connection)
            # Get the connection from the session
            connection = self.session.connection()
            Base.metadata.create_all(bind=connection)

            # Create an index on the vector column if it doesn't exist
            self.session.execute(
                text(
                    "CREATE INDEX IF NOT EXISTS idx_document_chunk_vector "
                    "ON document_chunk USING ivfflat (vector vector_cosine_ops) WITH (lists = 100);"
                )
            )
            self.session.execute(
                text(
                    "CREATE INDEX IF NOT EXISTS idx_document_chunk_collection_name "
                    "ON document_chunk (collection_name);"
                )
            )
            self.session.commit()
            print("Initialization complete.")
        except Exception as e:
            self.session.rollback()
            print(f"Error during initialization: {e}")
            raise

    def check_vector_length(self) -> None:
        """
        Check if the VECTOR_LENGTH matches the existing vector column dimension in the database.
        Raises an exception if there is a mismatch.
        """
        metadata = MetaData()
        metadata.reflect(bind=self.session.bind, only=["document_chunk"])

        if "document_chunk" in metadata.tables:
            document_chunk_table = metadata.tables["document_chunk"]
            if "vector" in document_chunk_table.columns:
                vector_column = document_chunk_table.columns["vector"]
                vector_type = vector_column.type
                if isinstance(vector_type, Vector):
                    db_vector_length = vector_type.dim
                    if db_vector_length != VECTOR_LENGTH:
                        raise Exception(
                            f"VECTOR_LENGTH {VECTOR_LENGTH} does not match existing vector column dimension {db_vector_length}. "
                            "Cannot change vector size after initialization without migrating the data."
                        )
                else:
                    raise Exception(
                        "The 'vector' column exists but is not of type 'Vector'."
                    )
            else:
                raise Exception(
                    "The 'vector' column does not exist in the 'document_chunk' table."
                )
        else:
            # Table does not exist yet; no action needed
            pass

    def adjust_vector_length(self, vector: List[float]) -> List[float]:
        # Adjust vector to have length VECTOR_LENGTH
        current_length = len(vector)
        if current_length < VECTOR_LENGTH:
            # Pad the vector with zeros
            vector += [0.0] * (VECTOR_LENGTH - current_length)
        elif current_length > VECTOR_LENGTH:
            raise Exception(
                f"Vector length {current_length} not supported. Max length must be <= {VECTOR_LENGTH}"
            )
        return vector

    def insert(self, collection_name: str, items: List[VectorItem]) -> None:
        try:
            new_items = []
            for item in items:
                vector = self.adjust_vector_length(item["vector"])
                new_chunk = DocumentChunk(
                    id=item["id"],
                    vector=vector,
                    collection_name=collection_name,
                    text=item["text"],
                    vmetadata=item["metadata"],
                )
                new_items.append(new_chunk)
            self.session.bulk_save_objects(new_items)
            self.session.commit()
            print(
                f"Inserted {len(new_items)} items into collection '{collection_name}'."
            )
        except Exception as e:
            self.session.rollback()
            print(f"Error during insert: {e}")
            raise

    def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
        try:
            for item in items:
                vector = self.adjust_vector_length(item["vector"])
                existing = (
                    self.session.query(DocumentChunk)
                    .filter(DocumentChunk.id == item["id"])
                    .first()
                )
                if existing:
                    existing.vector = vector
                    existing.text = item["text"]
                    existing.vmetadata = item["metadata"]
                    existing.collection_name = (
                        collection_name  # Update collection_name if necessary
                    )
                else:
                    new_chunk = DocumentChunk(
                        id=item["id"],
                        vector=vector,
                        collection_name=collection_name,
                        text=item["text"],
                        vmetadata=item["metadata"],
                    )
                    self.session.add(new_chunk)
            self.session.commit()
            print(f"Upserted {len(items)} items into collection '{collection_name}'.")
        except Exception as e:
            self.session.rollback()
            print(f"Error during upsert: {e}")
            raise

    def search(
        self,
        collection_name: str,
        vectors: List[List[float]],
        limit: Optional[int] = None,
    ) -> Optional[SearchResult]:
        try:
            if not vectors:
                return None

            # Adjust query vectors to VECTOR_LENGTH
            vectors = [self.adjust_vector_length(vector) for vector in vectors]
            num_queries = len(vectors)

            def vector_expr(vector):
                return cast(array(vector), Vector(VECTOR_LENGTH))

            # Create the values for query vectors
            qid_col = column("qid", Integer)
            q_vector_col = column("q_vector", Vector(VECTOR_LENGTH))
            query_vectors = (
                values(qid_col, q_vector_col)
                .data(
                    [(idx, vector_expr(vector)) for idx, vector in enumerate(vectors)]
                )
                .alias("query_vectors")
            )

            # Build the lateral subquery for each query vector
            subq = (
                select(
                    DocumentChunk.id,
                    DocumentChunk.text,
                    DocumentChunk.vmetadata,
                    (
                        DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector)
                    ).label("distance"),
                )
                .where(DocumentChunk.collection_name == collection_name)
                .order_by(
                    (DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector))
                )
            )
            if limit is not None:
                subq = subq.limit(limit)
            subq = subq.lateral("result")

            # Build the main query by joining query_vectors and the lateral subquery
            stmt = (
                select(
                    query_vectors.c.qid,
                    subq.c.id,
                    subq.c.text,
                    subq.c.vmetadata,
                    subq.c.distance,
                )
                .select_from(query_vectors)
                .join(subq, true())
                .order_by(query_vectors.c.qid, subq.c.distance)
            )

            result_proxy = self.session.execute(stmt)
            results = result_proxy.all()

            ids = [[] for _ in range(num_queries)]
            distances = [[] for _ in range(num_queries)]
            documents = [[] for _ in range(num_queries)]
            metadatas = [[] for _ in range(num_queries)]

            if not results:
                return SearchResult(
                    ids=ids,
                    distances=distances,
                    documents=documents,
                    metadatas=metadatas,
                )

            for row in results:
                qid = int(row.qid)
                ids[qid].append(row.id)
                distances[qid].append(row.distance)
                documents[qid].append(row.text)
                metadatas[qid].append(row.vmetadata)

            return SearchResult(
                ids=ids, distances=distances, documents=documents, metadatas=metadatas
            )
        except Exception as e:
            print(f"Error during search: {e}")
            return None

    def query(
        self, collection_name: str, filter: Dict[str, Any], limit: Optional[int] = None
    ) -> Optional[GetResult]:
        try:
            query = self.session.query(DocumentChunk).filter(
                DocumentChunk.collection_name == collection_name
            )

            for key, value in filter.items():
                query = query.filter(DocumentChunk.vmetadata[key].astext == str(value))

            if limit is not None:
                query = query.limit(limit)

            results = query.all()

            if not results:
                return None

            ids = [[result.id for result in results]]
            documents = [[result.text for result in results]]
            metadatas = [[result.vmetadata for result in results]]

            return GetResult(
                ids=ids,
                documents=documents,
                metadatas=metadatas,
            )
        except Exception as e:
            print(f"Error during query: {e}")
            return None

    def get(
        self, collection_name: str, limit: Optional[int] = None
    ) -> Optional[GetResult]:
        try:
            query = self.session.query(DocumentChunk).filter(
                DocumentChunk.collection_name == collection_name
            )
            if limit is not None:
                query = query.limit(limit)

            results = query.all()

            if not results:
                return None

            ids = [[result.id for result in results]]
            documents = [[result.text for result in results]]
            metadatas = [[result.vmetadata for result in results]]

            return GetResult(ids=ids, documents=documents, metadatas=metadatas)
        except Exception as e:
            print(f"Error during get: {e}")
            return None

    def delete(
        self,
        collection_name: str,
        ids: Optional[List[str]] = None,
        filter: Optional[Dict[str, Any]] = None,
    ) -> None:
        try:
            query = self.session.query(DocumentChunk).filter(
                DocumentChunk.collection_name == collection_name
            )
            if ids:
                query = query.filter(DocumentChunk.id.in_(ids))
            if filter:
                for key, value in filter.items():
                    query = query.filter(
                        DocumentChunk.vmetadata[key].astext == str(value)
                    )
            deleted = query.delete(synchronize_session=False)
            self.session.commit()
            print(f"Deleted {deleted} items from collection '{collection_name}'.")
        except Exception as e:
            self.session.rollback()
            print(f"Error during delete: {e}")
            raise

    def reset(self) -> None:
        try:
            deleted = self.session.query(DocumentChunk).delete()
            self.session.commit()
            print(
                f"Reset complete. Deleted {deleted} items from 'document_chunk' table."
            )
        except Exception as e:
            self.session.rollback()
            print(f"Error during reset: {e}")
            raise

    def close(self) -> None:
        pass

    def has_collection(self, collection_name: str) -> bool:
        try:
            exists = (
                self.session.query(DocumentChunk)
                .filter(DocumentChunk.collection_name == collection_name)
                .first()
                is not None
            )
            return exists
        except Exception as e:
            print(f"Error checking collection existence: {e}")
            return False

    def delete_collection(self, collection_name: str) -> None:
        self.delete(collection_name)
        print(f"Collection '{collection_name}' deleted.")