Spaces:
Running
Running
File size: 27,427 Bytes
efe3ae2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
import hashlib
import json
import logging
import os
import uuid
from functools import lru_cache
from pathlib import Path
from pydub import AudioSegment
from pydub.silence import split_on_silence
import aiohttp
import aiofiles
import requests
import mimetypes
from fastapi import (
Depends,
FastAPI,
File,
HTTPException,
Request,
UploadFile,
status,
APIRouter,
)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from pydantic import BaseModel
from open_webui.utils.auth import get_admin_user, get_verified_user
from open_webui.config import (
WHISPER_MODEL_AUTO_UPDATE,
WHISPER_MODEL_DIR,
CACHE_DIR,
)
from open_webui.constants import ERROR_MESSAGES
from open_webui.env import (
AIOHTTP_CLIENT_TIMEOUT,
ENV,
SRC_LOG_LEVELS,
DEVICE_TYPE,
ENABLE_FORWARD_USER_INFO_HEADERS,
)
router = APIRouter()
# Constants
MAX_FILE_SIZE_MB = 25
MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["AUDIO"])
SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/")
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True)
##########################################
#
# Utility functions
#
##########################################
from pydub import AudioSegment
from pydub.utils import mediainfo
def is_mp4_audio(file_path):
"""Check if the given file is an MP4 audio file."""
if not os.path.isfile(file_path):
print(f"File not found: {file_path}")
return False
info = mediainfo(file_path)
if (
info.get("codec_name") == "aac"
and info.get("codec_type") == "audio"
and info.get("codec_tag_string") == "mp4a"
):
return True
return False
def convert_mp4_to_wav(file_path, output_path):
"""Convert MP4 audio file to WAV format."""
audio = AudioSegment.from_file(file_path, format="mp4")
audio.export(output_path, format="wav")
print(f"Converted {file_path} to {output_path}")
def set_faster_whisper_model(model: str, auto_update: bool = False):
whisper_model = None
if model:
from faster_whisper import WhisperModel
faster_whisper_kwargs = {
"model_size_or_path": model,
"device": DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu",
"compute_type": "int8",
"download_root": WHISPER_MODEL_DIR,
"local_files_only": not auto_update,
}
try:
whisper_model = WhisperModel(**faster_whisper_kwargs)
except Exception:
log.warning(
"WhisperModel initialization failed, attempting download with local_files_only=False"
)
faster_whisper_kwargs["local_files_only"] = False
whisper_model = WhisperModel(**faster_whisper_kwargs)
return whisper_model
##########################################
#
# Audio API
#
##########################################
class TTSConfigForm(BaseModel):
OPENAI_API_BASE_URL: str
OPENAI_API_KEY: str
API_KEY: str
ENGINE: str
MODEL: str
VOICE: str
SPLIT_ON: str
AZURE_SPEECH_REGION: str
AZURE_SPEECH_OUTPUT_FORMAT: str
class STTConfigForm(BaseModel):
OPENAI_API_BASE_URL: str
OPENAI_API_KEY: str
ENGINE: str
MODEL: str
WHISPER_MODEL: str
DEEPGRAM_API_KEY: str
class AudioConfigUpdateForm(BaseModel):
tts: TTSConfigForm
stt: STTConfigForm
@router.get("/config")
async def get_audio_config(request: Request, user=Depends(get_admin_user)):
return {
"tts": {
"OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
"OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
"API_KEY": request.app.state.config.TTS_API_KEY,
"ENGINE": request.app.state.config.TTS_ENGINE,
"MODEL": request.app.state.config.TTS_MODEL,
"VOICE": request.app.state.config.TTS_VOICE,
"SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
"AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
"AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
},
"stt": {
"OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
"OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
"ENGINE": request.app.state.config.STT_ENGINE,
"MODEL": request.app.state.config.STT_MODEL,
"WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
"DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY,
},
}
@router.post("/config/update")
async def update_audio_config(
request: Request, form_data: AudioConfigUpdateForm, user=Depends(get_admin_user)
):
request.app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL
request.app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY
request.app.state.config.TTS_API_KEY = form_data.tts.API_KEY
request.app.state.config.TTS_ENGINE = form_data.tts.ENGINE
request.app.state.config.TTS_MODEL = form_data.tts.MODEL
request.app.state.config.TTS_VOICE = form_data.tts.VOICE
request.app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON
request.app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION
request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = (
form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT
)
request.app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL
request.app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY
request.app.state.config.STT_ENGINE = form_data.stt.ENGINE
request.app.state.config.STT_MODEL = form_data.stt.MODEL
request.app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL
request.app.state.config.DEEPGRAM_API_KEY = form_data.stt.DEEPGRAM_API_KEY
if request.app.state.config.STT_ENGINE == "":
request.app.state.faster_whisper_model = set_faster_whisper_model(
form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE
)
return {
"tts": {
"OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
"OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
"API_KEY": request.app.state.config.TTS_API_KEY,
"ENGINE": request.app.state.config.TTS_ENGINE,
"MODEL": request.app.state.config.TTS_MODEL,
"VOICE": request.app.state.config.TTS_VOICE,
"SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
"AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
"AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
},
"stt": {
"OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
"OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
"ENGINE": request.app.state.config.STT_ENGINE,
"MODEL": request.app.state.config.STT_MODEL,
"WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
"DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY,
},
}
def load_speech_pipeline(request):
from transformers import pipeline
from datasets import load_dataset
if request.app.state.speech_synthesiser is None:
request.app.state.speech_synthesiser = pipeline(
"text-to-speech", "microsoft/speecht5_tts"
)
if request.app.state.speech_speaker_embeddings_dataset is None:
request.app.state.speech_speaker_embeddings_dataset = load_dataset(
"Matthijs/cmu-arctic-xvectors", split="validation"
)
@router.post("/speech")
async def speech(request: Request, user=Depends(get_verified_user)):
body = await request.body()
name = hashlib.sha256(
body
+ str(request.app.state.config.TTS_ENGINE).encode("utf-8")
+ str(request.app.state.config.TTS_MODEL).encode("utf-8")
).hexdigest()
file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3")
file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json")
# Check if the file already exists in the cache
if file_path.is_file():
return FileResponse(file_path)
payload = None
try:
payload = json.loads(body.decode("utf-8"))
except Exception as e:
log.exception(e)
raise HTTPException(status_code=400, detail="Invalid JSON payload")
if request.app.state.config.TTS_ENGINE == "openai":
payload["model"] = request.app.state.config.TTS_MODEL
try:
# print(payload)
timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
async with aiohttp.ClientSession(
timeout=timeout, trust_env=True
) as session:
async with session.post(
url=f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech",
json=payload,
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {request.app.state.config.TTS_OPENAI_API_KEY}",
**(
{
"X-OpenWebUI-User-Name": user.name,
"X-OpenWebUI-User-Id": user.id,
"X-OpenWebUI-User-Email": user.email,
"X-OpenWebUI-User-Role": user.role,
}
if ENABLE_FORWARD_USER_INFO_HEADERS
else {}
),
},
) as r:
r.raise_for_status()
async with aiofiles.open(file_path, "wb") as f:
await f.write(await r.read())
async with aiofiles.open(file_body_path, "w") as f:
await f.write(json.dumps(payload))
return FileResponse(file_path)
except Exception as e:
log.exception(e)
detail = None
try:
if r.status != 200:
res = await r.json()
if "error" in res:
detail = f"External: {res['error'].get('message', '')}"
except Exception:
detail = f"External: {e}"
raise HTTPException(
status_code=getattr(r, "status", 500),
detail=detail if detail else "Open WebUI: Server Connection Error",
)
elif request.app.state.config.TTS_ENGINE == "elevenlabs":
voice_id = payload.get("voice", "")
if voice_id not in get_available_voices(request):
raise HTTPException(
status_code=400,
detail="Invalid voice id",
)
try:
timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
async with aiohttp.ClientSession(
timeout=timeout, trust_env=True
) as session:
async with session.post(
f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
json={
"text": payload["input"],
"model_id": request.app.state.config.TTS_MODEL,
"voice_settings": {"stability": 0.5, "similarity_boost": 0.5},
},
headers={
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": request.app.state.config.TTS_API_KEY,
},
) as r:
r.raise_for_status()
async with aiofiles.open(file_path, "wb") as f:
await f.write(await r.read())
async with aiofiles.open(file_body_path, "w") as f:
await f.write(json.dumps(payload))
return FileResponse(file_path)
except Exception as e:
log.exception(e)
detail = None
try:
if r.status != 200:
res = await r.json()
if "error" in res:
detail = f"External: {res['error'].get('message', '')}"
except Exception:
detail = f"External: {e}"
raise HTTPException(
status_code=getattr(r, "status", 500),
detail=detail if detail else "Open WebUI: Server Connection Error",
)
elif request.app.state.config.TTS_ENGINE == "azure":
try:
payload = json.loads(body.decode("utf-8"))
except Exception as e:
log.exception(e)
raise HTTPException(status_code=400, detail="Invalid JSON payload")
region = request.app.state.config.TTS_AZURE_SPEECH_REGION
language = request.app.state.config.TTS_VOICE
locale = "-".join(request.app.state.config.TTS_VOICE.split("-")[:1])
output_format = request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT
try:
data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}">
<voice name="{language}">{payload["input"]}</voice>
</speak>"""
timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
async with aiohttp.ClientSession(
timeout=timeout, trust_env=True
) as session:
async with session.post(
f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1",
headers={
"Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY,
"Content-Type": "application/ssml+xml",
"X-Microsoft-OutputFormat": output_format,
},
data=data,
) as r:
r.raise_for_status()
async with aiofiles.open(file_path, "wb") as f:
await f.write(await r.read())
async with aiofiles.open(file_body_path, "w") as f:
await f.write(json.dumps(payload))
return FileResponse(file_path)
except Exception as e:
log.exception(e)
detail = None
try:
if r.status != 200:
res = await r.json()
if "error" in res:
detail = f"External: {res['error'].get('message', '')}"
except Exception:
detail = f"External: {e}"
raise HTTPException(
status_code=getattr(r, "status", 500),
detail=detail if detail else "Open WebUI: Server Connection Error",
)
elif request.app.state.config.TTS_ENGINE == "transformers":
payload = None
try:
payload = json.loads(body.decode("utf-8"))
except Exception as e:
log.exception(e)
raise HTTPException(status_code=400, detail="Invalid JSON payload")
import torch
import soundfile as sf
load_speech_pipeline(request)
embeddings_dataset = request.app.state.speech_speaker_embeddings_dataset
speaker_index = 6799
try:
speaker_index = embeddings_dataset["filename"].index(
request.app.state.config.TTS_MODEL
)
except Exception:
pass
speaker_embedding = torch.tensor(
embeddings_dataset[speaker_index]["xvector"]
).unsqueeze(0)
speech = request.app.state.speech_synthesiser(
payload["input"],
forward_params={"speaker_embeddings": speaker_embedding},
)
sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"])
async with aiofiles.open(file_body_path, "w") as f:
await f.write(json.dumps(payload))
return FileResponse(file_path)
def transcribe(request: Request, file_path):
print("transcribe", file_path)
filename = os.path.basename(file_path)
file_dir = os.path.dirname(file_path)
id = filename.split(".")[0]
if request.app.state.config.STT_ENGINE == "":
if request.app.state.faster_whisper_model is None:
request.app.state.faster_whisper_model = set_faster_whisper_model(
request.app.state.config.WHISPER_MODEL
)
model = request.app.state.faster_whisper_model
segments, info = model.transcribe(file_path, beam_size=5)
log.info(
"Detected language '%s' with probability %f"
% (info.language, info.language_probability)
)
transcript = "".join([segment.text for segment in list(segments)])
data = {"text": transcript.strip()}
# save the transcript to a json file
transcript_file = f"{file_dir}/{id}.json"
with open(transcript_file, "w") as f:
json.dump(data, f)
log.debug(data)
return data
elif request.app.state.config.STT_ENGINE == "openai":
if is_mp4_audio(file_path):
os.rename(file_path, file_path.replace(".wav", ".mp4"))
# Convert MP4 audio file to WAV format
convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path)
r = None
try:
r = requests.post(
url=f"{request.app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions",
headers={
"Authorization": f"Bearer {request.app.state.config.STT_OPENAI_API_KEY}"
},
files={"file": (filename, open(file_path, "rb"))},
data={"model": request.app.state.config.STT_MODEL},
)
r.raise_for_status()
data = r.json()
# save the transcript to a json file
transcript_file = f"{file_dir}/{id}.json"
with open(transcript_file, "w") as f:
json.dump(data, f)
return data
except Exception as e:
log.exception(e)
detail = None
if r is not None:
try:
res = r.json()
if "error" in res:
detail = f"External: {res['error'].get('message', '')}"
except Exception:
detail = f"External: {e}"
raise Exception(detail if detail else "Open WebUI: Server Connection Error")
elif request.app.state.config.STT_ENGINE == "deepgram":
try:
# Determine the MIME type of the file
mime, _ = mimetypes.guess_type(file_path)
if not mime:
mime = "audio/wav" # fallback to wav if undetectable
# Read the audio file
with open(file_path, "rb") as f:
file_data = f.read()
# Build headers and parameters
headers = {
"Authorization": f"Token {request.app.state.config.DEEPGRAM_API_KEY}",
"Content-Type": mime,
}
# Add model if specified
params = {}
if request.app.state.config.STT_MODEL:
params["model"] = request.app.state.config.STT_MODEL
# Make request to Deepgram API
r = requests.post(
"https://api.deepgram.com/v1/listen",
headers=headers,
params=params,
data=file_data,
)
r.raise_for_status()
response_data = r.json()
# Extract transcript from Deepgram response
try:
transcript = response_data["results"]["channels"][0]["alternatives"][
0
].get("transcript", "")
except (KeyError, IndexError) as e:
log.error(f"Malformed response from Deepgram: {str(e)}")
raise Exception(
"Failed to parse Deepgram response - unexpected response format"
)
data = {"text": transcript.strip()}
# Save transcript
transcript_file = f"{file_dir}/{id}.json"
with open(transcript_file, "w") as f:
json.dump(data, f)
return data
except Exception as e:
log.exception(e)
detail = None
if r is not None:
try:
res = r.json()
if "error" in res:
detail = f"External: {res['error'].get('message', '')}"
except Exception:
detail = f"External: {e}"
raise Exception(detail if detail else "Open WebUI: Server Connection Error")
def compress_audio(file_path):
if os.path.getsize(file_path) > MAX_FILE_SIZE:
file_dir = os.path.dirname(file_path)
audio = AudioSegment.from_file(file_path)
audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio
compressed_path = f"{file_dir}/{id}_compressed.opus"
audio.export(compressed_path, format="opus", bitrate="32k")
log.debug(f"Compressed audio to {compressed_path}")
if (
os.path.getsize(compressed_path) > MAX_FILE_SIZE
): # Still larger than MAX_FILE_SIZE after compression
raise Exception(ERROR_MESSAGES.FILE_TOO_LARGE(size=f"{MAX_FILE_SIZE_MB}MB"))
return compressed_path
else:
return file_path
@router.post("/transcriptions")
def transcription(
request: Request,
file: UploadFile = File(...),
user=Depends(get_verified_user),
):
log.info(f"file.content_type: {file.content_type}")
if file.content_type not in ["audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a"]:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED,
)
try:
ext = file.filename.split(".")[-1]
id = uuid.uuid4()
filename = f"{id}.{ext}"
contents = file.file.read()
file_dir = f"{CACHE_DIR}/audio/transcriptions"
os.makedirs(file_dir, exist_ok=True)
file_path = f"{file_dir}/{filename}"
with open(file_path, "wb") as f:
f.write(contents)
try:
try:
file_path = compress_audio(file_path)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
data = transcribe(request, file_path)
file_path = file_path.split("/")[-1]
return {**data, "filename": file_path}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
def get_available_models(request: Request) -> list[dict]:
available_models = []
if request.app.state.config.TTS_ENGINE == "openai":
available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}]
elif request.app.state.config.TTS_ENGINE == "elevenlabs":
try:
response = requests.get(
"https://api.elevenlabs.io/v1/models",
headers={
"xi-api-key": request.app.state.config.TTS_API_KEY,
"Content-Type": "application/json",
},
timeout=5,
)
response.raise_for_status()
models = response.json()
available_models = [
{"name": model["name"], "id": model["model_id"]} for model in models
]
except requests.RequestException as e:
log.error(f"Error fetching voices: {str(e)}")
return available_models
@router.get("/models")
async def get_models(request: Request, user=Depends(get_verified_user)):
return {"models": get_available_models(request)}
def get_available_voices(request) -> dict:
"""Returns {voice_id: voice_name} dict"""
available_voices = {}
if request.app.state.config.TTS_ENGINE == "openai":
available_voices = {
"alloy": "alloy",
"echo": "echo",
"fable": "fable",
"onyx": "onyx",
"nova": "nova",
"shimmer": "shimmer",
}
elif request.app.state.config.TTS_ENGINE == "elevenlabs":
try:
available_voices = get_elevenlabs_voices(
api_key=request.app.state.config.TTS_API_KEY
)
except Exception:
# Avoided @lru_cache with exception
pass
elif request.app.state.config.TTS_ENGINE == "azure":
try:
region = request.app.state.config.TTS_AZURE_SPEECH_REGION
url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list"
headers = {
"Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY
}
response = requests.get(url, headers=headers)
response.raise_for_status()
voices = response.json()
for voice in voices:
available_voices[voice["ShortName"]] = (
f"{voice['DisplayName']} ({voice['ShortName']})"
)
except requests.RequestException as e:
log.error(f"Error fetching voices: {str(e)}")
return available_voices
@lru_cache
def get_elevenlabs_voices(api_key: str) -> dict:
"""
Note, set the following in your .env file to use Elevenlabs:
AUDIO_TTS_ENGINE=elevenlabs
AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key
AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices
AUDIO_TTS_MODEL=eleven_multilingual_v2
"""
try:
# TODO: Add retries
response = requests.get(
"https://api.elevenlabs.io/v1/voices",
headers={
"xi-api-key": api_key,
"Content-Type": "application/json",
},
)
response.raise_for_status()
voices_data = response.json()
voices = {}
for voice in voices_data.get("voices", []):
voices[voice["voice_id"]] = voice["name"]
except requests.RequestException as e:
# Avoid @lru_cache with exception
log.error(f"Error fetching voices: {str(e)}")
raise RuntimeError(f"Error fetching voices: {str(e)}")
return voices
@router.get("/voices")
async def get_voices(request: Request, user=Depends(get_verified_user)):
return {
"voices": [
{"id": k, "name": v} for k, v in get_available_voices(request).items()
]
}
|