File size: 27,427 Bytes
efe3ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
import hashlib
import json
import logging
import os
import uuid
from functools import lru_cache
from pathlib import Path
from pydub import AudioSegment
from pydub.silence import split_on_silence

import aiohttp
import aiofiles
import requests
import mimetypes

from fastapi import (
    Depends,
    FastAPI,
    File,
    HTTPException,
    Request,
    UploadFile,
    status,
    APIRouter,
)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from pydantic import BaseModel


from open_webui.utils.auth import get_admin_user, get_verified_user
from open_webui.config import (
    WHISPER_MODEL_AUTO_UPDATE,
    WHISPER_MODEL_DIR,
    CACHE_DIR,
)

from open_webui.constants import ERROR_MESSAGES
from open_webui.env import (
    AIOHTTP_CLIENT_TIMEOUT,
    ENV,
    SRC_LOG_LEVELS,
    DEVICE_TYPE,
    ENABLE_FORWARD_USER_INFO_HEADERS,
)


router = APIRouter()

# Constants
MAX_FILE_SIZE_MB = 25
MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024  # Convert MB to bytes

log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["AUDIO"])

SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/")
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True)


##########################################
#
# Utility functions
#
##########################################

from pydub import AudioSegment
from pydub.utils import mediainfo


def is_mp4_audio(file_path):
    """Check if the given file is an MP4 audio file."""
    if not os.path.isfile(file_path):
        print(f"File not found: {file_path}")
        return False

    info = mediainfo(file_path)
    if (
        info.get("codec_name") == "aac"
        and info.get("codec_type") == "audio"
        and info.get("codec_tag_string") == "mp4a"
    ):
        return True
    return False


def convert_mp4_to_wav(file_path, output_path):
    """Convert MP4 audio file to WAV format."""
    audio = AudioSegment.from_file(file_path, format="mp4")
    audio.export(output_path, format="wav")
    print(f"Converted {file_path} to {output_path}")


def set_faster_whisper_model(model: str, auto_update: bool = False):
    whisper_model = None
    if model:
        from faster_whisper import WhisperModel

        faster_whisper_kwargs = {
            "model_size_or_path": model,
            "device": DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu",
            "compute_type": "int8",
            "download_root": WHISPER_MODEL_DIR,
            "local_files_only": not auto_update,
        }

        try:
            whisper_model = WhisperModel(**faster_whisper_kwargs)
        except Exception:
            log.warning(
                "WhisperModel initialization failed, attempting download with local_files_only=False"
            )
            faster_whisper_kwargs["local_files_only"] = False
            whisper_model = WhisperModel(**faster_whisper_kwargs)
    return whisper_model


##########################################
#
# Audio API
#
##########################################


class TTSConfigForm(BaseModel):
    OPENAI_API_BASE_URL: str
    OPENAI_API_KEY: str
    API_KEY: str
    ENGINE: str
    MODEL: str
    VOICE: str
    SPLIT_ON: str
    AZURE_SPEECH_REGION: str
    AZURE_SPEECH_OUTPUT_FORMAT: str


class STTConfigForm(BaseModel):
    OPENAI_API_BASE_URL: str
    OPENAI_API_KEY: str
    ENGINE: str
    MODEL: str
    WHISPER_MODEL: str
    DEEPGRAM_API_KEY: str


class AudioConfigUpdateForm(BaseModel):
    tts: TTSConfigForm
    stt: STTConfigForm


@router.get("/config")
async def get_audio_config(request: Request, user=Depends(get_admin_user)):
    return {
        "tts": {
            "OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
            "OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
            "API_KEY": request.app.state.config.TTS_API_KEY,
            "ENGINE": request.app.state.config.TTS_ENGINE,
            "MODEL": request.app.state.config.TTS_MODEL,
            "VOICE": request.app.state.config.TTS_VOICE,
            "SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
            "AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
            "AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
        },
        "stt": {
            "OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
            "OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
            "ENGINE": request.app.state.config.STT_ENGINE,
            "MODEL": request.app.state.config.STT_MODEL,
            "WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
            "DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY,
        },
    }


@router.post("/config/update")
async def update_audio_config(
    request: Request, form_data: AudioConfigUpdateForm, user=Depends(get_admin_user)
):
    request.app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL
    request.app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY
    request.app.state.config.TTS_API_KEY = form_data.tts.API_KEY
    request.app.state.config.TTS_ENGINE = form_data.tts.ENGINE
    request.app.state.config.TTS_MODEL = form_data.tts.MODEL
    request.app.state.config.TTS_VOICE = form_data.tts.VOICE
    request.app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON
    request.app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION
    request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = (
        form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT
    )

    request.app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL
    request.app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY
    request.app.state.config.STT_ENGINE = form_data.stt.ENGINE
    request.app.state.config.STT_MODEL = form_data.stt.MODEL
    request.app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL
    request.app.state.config.DEEPGRAM_API_KEY = form_data.stt.DEEPGRAM_API_KEY

    if request.app.state.config.STT_ENGINE == "":
        request.app.state.faster_whisper_model = set_faster_whisper_model(
            form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE
        )

    return {
        "tts": {
            "OPENAI_API_BASE_URL": request.app.state.config.TTS_OPENAI_API_BASE_URL,
            "OPENAI_API_KEY": request.app.state.config.TTS_OPENAI_API_KEY,
            "API_KEY": request.app.state.config.TTS_API_KEY,
            "ENGINE": request.app.state.config.TTS_ENGINE,
            "MODEL": request.app.state.config.TTS_MODEL,
            "VOICE": request.app.state.config.TTS_VOICE,
            "SPLIT_ON": request.app.state.config.TTS_SPLIT_ON,
            "AZURE_SPEECH_REGION": request.app.state.config.TTS_AZURE_SPEECH_REGION,
            "AZURE_SPEECH_OUTPUT_FORMAT": request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
        },
        "stt": {
            "OPENAI_API_BASE_URL": request.app.state.config.STT_OPENAI_API_BASE_URL,
            "OPENAI_API_KEY": request.app.state.config.STT_OPENAI_API_KEY,
            "ENGINE": request.app.state.config.STT_ENGINE,
            "MODEL": request.app.state.config.STT_MODEL,
            "WHISPER_MODEL": request.app.state.config.WHISPER_MODEL,
            "DEEPGRAM_API_KEY": request.app.state.config.DEEPGRAM_API_KEY,
        },
    }


def load_speech_pipeline(request):
    from transformers import pipeline
    from datasets import load_dataset

    if request.app.state.speech_synthesiser is None:
        request.app.state.speech_synthesiser = pipeline(
            "text-to-speech", "microsoft/speecht5_tts"
        )

    if request.app.state.speech_speaker_embeddings_dataset is None:
        request.app.state.speech_speaker_embeddings_dataset = load_dataset(
            "Matthijs/cmu-arctic-xvectors", split="validation"
        )


@router.post("/speech")
async def speech(request: Request, user=Depends(get_verified_user)):
    body = await request.body()
    name = hashlib.sha256(
        body
        + str(request.app.state.config.TTS_ENGINE).encode("utf-8")
        + str(request.app.state.config.TTS_MODEL).encode("utf-8")
    ).hexdigest()

    file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3")
    file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json")

    # Check if the file already exists in the cache
    if file_path.is_file():
        return FileResponse(file_path)

    payload = None
    try:
        payload = json.loads(body.decode("utf-8"))
    except Exception as e:
        log.exception(e)
        raise HTTPException(status_code=400, detail="Invalid JSON payload")

    if request.app.state.config.TTS_ENGINE == "openai":
        payload["model"] = request.app.state.config.TTS_MODEL

        try:
            # print(payload)
            timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
            async with aiohttp.ClientSession(
                timeout=timeout, trust_env=True
            ) as session:
                async with session.post(
                    url=f"{request.app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech",
                    json=payload,
                    headers={
                        "Content-Type": "application/json",
                        "Authorization": f"Bearer {request.app.state.config.TTS_OPENAI_API_KEY}",
                        **(
                            {
                                "X-OpenWebUI-User-Name": user.name,
                                "X-OpenWebUI-User-Id": user.id,
                                "X-OpenWebUI-User-Email": user.email,
                                "X-OpenWebUI-User-Role": user.role,
                            }
                            if ENABLE_FORWARD_USER_INFO_HEADERS
                            else {}
                        ),
                    },
                ) as r:
                    r.raise_for_status()

                    async with aiofiles.open(file_path, "wb") as f:
                        await f.write(await r.read())

                    async with aiofiles.open(file_body_path, "w") as f:
                        await f.write(json.dumps(payload))

            return FileResponse(file_path)

        except Exception as e:
            log.exception(e)
            detail = None

            try:
                if r.status != 200:
                    res = await r.json()

                    if "error" in res:
                        detail = f"External: {res['error'].get('message', '')}"
            except Exception:
                detail = f"External: {e}"

            raise HTTPException(
                status_code=getattr(r, "status", 500),
                detail=detail if detail else "Open WebUI: Server Connection Error",
            )

    elif request.app.state.config.TTS_ENGINE == "elevenlabs":
        voice_id = payload.get("voice", "")

        if voice_id not in get_available_voices(request):
            raise HTTPException(
                status_code=400,
                detail="Invalid voice id",
            )

        try:
            timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
            async with aiohttp.ClientSession(
                timeout=timeout, trust_env=True
            ) as session:
                async with session.post(
                    f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
                    json={
                        "text": payload["input"],
                        "model_id": request.app.state.config.TTS_MODEL,
                        "voice_settings": {"stability": 0.5, "similarity_boost": 0.5},
                    },
                    headers={
                        "Accept": "audio/mpeg",
                        "Content-Type": "application/json",
                        "xi-api-key": request.app.state.config.TTS_API_KEY,
                    },
                ) as r:
                    r.raise_for_status()

                    async with aiofiles.open(file_path, "wb") as f:
                        await f.write(await r.read())

                    async with aiofiles.open(file_body_path, "w") as f:
                        await f.write(json.dumps(payload))

            return FileResponse(file_path)

        except Exception as e:
            log.exception(e)
            detail = None

            try:
                if r.status != 200:
                    res = await r.json()
                    if "error" in res:
                        detail = f"External: {res['error'].get('message', '')}"
            except Exception:
                detail = f"External: {e}"

            raise HTTPException(
                status_code=getattr(r, "status", 500),
                detail=detail if detail else "Open WebUI: Server Connection Error",
            )

    elif request.app.state.config.TTS_ENGINE == "azure":
        try:
            payload = json.loads(body.decode("utf-8"))
        except Exception as e:
            log.exception(e)
            raise HTTPException(status_code=400, detail="Invalid JSON payload")

        region = request.app.state.config.TTS_AZURE_SPEECH_REGION
        language = request.app.state.config.TTS_VOICE
        locale = "-".join(request.app.state.config.TTS_VOICE.split("-")[:1])
        output_format = request.app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT

        try:
            data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}">
                <voice name="{language}">{payload["input"]}</voice>
            </speak>"""
            timeout = aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
            async with aiohttp.ClientSession(
                timeout=timeout, trust_env=True
            ) as session:
                async with session.post(
                    f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1",
                    headers={
                        "Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY,
                        "Content-Type": "application/ssml+xml",
                        "X-Microsoft-OutputFormat": output_format,
                    },
                    data=data,
                ) as r:
                    r.raise_for_status()

                    async with aiofiles.open(file_path, "wb") as f:
                        await f.write(await r.read())

                    async with aiofiles.open(file_body_path, "w") as f:
                        await f.write(json.dumps(payload))

                    return FileResponse(file_path)

        except Exception as e:
            log.exception(e)
            detail = None

            try:
                if r.status != 200:
                    res = await r.json()
                    if "error" in res:
                        detail = f"External: {res['error'].get('message', '')}"
            except Exception:
                detail = f"External: {e}"

            raise HTTPException(
                status_code=getattr(r, "status", 500),
                detail=detail if detail else "Open WebUI: Server Connection Error",
            )

    elif request.app.state.config.TTS_ENGINE == "transformers":
        payload = None
        try:
            payload = json.loads(body.decode("utf-8"))
        except Exception as e:
            log.exception(e)
            raise HTTPException(status_code=400, detail="Invalid JSON payload")

        import torch
        import soundfile as sf

        load_speech_pipeline(request)

        embeddings_dataset = request.app.state.speech_speaker_embeddings_dataset

        speaker_index = 6799
        try:
            speaker_index = embeddings_dataset["filename"].index(
                request.app.state.config.TTS_MODEL
            )
        except Exception:
            pass

        speaker_embedding = torch.tensor(
            embeddings_dataset[speaker_index]["xvector"]
        ).unsqueeze(0)

        speech = request.app.state.speech_synthesiser(
            payload["input"],
            forward_params={"speaker_embeddings": speaker_embedding},
        )

        sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"])

        async with aiofiles.open(file_body_path, "w") as f:
            await f.write(json.dumps(payload))

        return FileResponse(file_path)


def transcribe(request: Request, file_path):
    print("transcribe", file_path)
    filename = os.path.basename(file_path)
    file_dir = os.path.dirname(file_path)
    id = filename.split(".")[0]

    if request.app.state.config.STT_ENGINE == "":
        if request.app.state.faster_whisper_model is None:
            request.app.state.faster_whisper_model = set_faster_whisper_model(
                request.app.state.config.WHISPER_MODEL
            )

        model = request.app.state.faster_whisper_model
        segments, info = model.transcribe(file_path, beam_size=5)
        log.info(
            "Detected language '%s' with probability %f"
            % (info.language, info.language_probability)
        )

        transcript = "".join([segment.text for segment in list(segments)])
        data = {"text": transcript.strip()}

        # save the transcript to a json file
        transcript_file = f"{file_dir}/{id}.json"
        with open(transcript_file, "w") as f:
            json.dump(data, f)

        log.debug(data)
        return data
    elif request.app.state.config.STT_ENGINE == "openai":
        if is_mp4_audio(file_path):
            os.rename(file_path, file_path.replace(".wav", ".mp4"))
            # Convert MP4 audio file to WAV format
            convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path)

        r = None
        try:
            r = requests.post(
                url=f"{request.app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions",
                headers={
                    "Authorization": f"Bearer {request.app.state.config.STT_OPENAI_API_KEY}"
                },
                files={"file": (filename, open(file_path, "rb"))},
                data={"model": request.app.state.config.STT_MODEL},
            )

            r.raise_for_status()
            data = r.json()

            # save the transcript to a json file
            transcript_file = f"{file_dir}/{id}.json"
            with open(transcript_file, "w") as f:
                json.dump(data, f)

            return data
        except Exception as e:
            log.exception(e)

            detail = None
            if r is not None:
                try:
                    res = r.json()
                    if "error" in res:
                        detail = f"External: {res['error'].get('message', '')}"
                except Exception:
                    detail = f"External: {e}"

            raise Exception(detail if detail else "Open WebUI: Server Connection Error")

    elif request.app.state.config.STT_ENGINE == "deepgram":
        try:
            # Determine the MIME type of the file
            mime, _ = mimetypes.guess_type(file_path)
            if not mime:
                mime = "audio/wav"  # fallback to wav if undetectable

            # Read the audio file
            with open(file_path, "rb") as f:
                file_data = f.read()

            # Build headers and parameters
            headers = {
                "Authorization": f"Token {request.app.state.config.DEEPGRAM_API_KEY}",
                "Content-Type": mime,
            }

            # Add model if specified
            params = {}
            if request.app.state.config.STT_MODEL:
                params["model"] = request.app.state.config.STT_MODEL

            # Make request to Deepgram API
            r = requests.post(
                "https://api.deepgram.com/v1/listen",
                headers=headers,
                params=params,
                data=file_data,
            )
            r.raise_for_status()
            response_data = r.json()

            # Extract transcript from Deepgram response
            try:
                transcript = response_data["results"]["channels"][0]["alternatives"][
                    0
                ].get("transcript", "")
            except (KeyError, IndexError) as e:
                log.error(f"Malformed response from Deepgram: {str(e)}")
                raise Exception(
                    "Failed to parse Deepgram response - unexpected response format"
                )
            data = {"text": transcript.strip()}

            # Save transcript
            transcript_file = f"{file_dir}/{id}.json"
            with open(transcript_file, "w") as f:
                json.dump(data, f)

            return data

        except Exception as e:
            log.exception(e)
            detail = None
            if r is not None:
                try:
                    res = r.json()
                    if "error" in res:
                        detail = f"External: {res['error'].get('message', '')}"
                except Exception:
                    detail = f"External: {e}"
            raise Exception(detail if detail else "Open WebUI: Server Connection Error")


def compress_audio(file_path):
    if os.path.getsize(file_path) > MAX_FILE_SIZE:
        file_dir = os.path.dirname(file_path)
        audio = AudioSegment.from_file(file_path)
        audio = audio.set_frame_rate(16000).set_channels(1)  # Compress audio
        compressed_path = f"{file_dir}/{id}_compressed.opus"
        audio.export(compressed_path, format="opus", bitrate="32k")
        log.debug(f"Compressed audio to {compressed_path}")

        if (
            os.path.getsize(compressed_path) > MAX_FILE_SIZE
        ):  # Still larger than MAX_FILE_SIZE after compression
            raise Exception(ERROR_MESSAGES.FILE_TOO_LARGE(size=f"{MAX_FILE_SIZE_MB}MB"))
        return compressed_path
    else:
        return file_path


@router.post("/transcriptions")
def transcription(
    request: Request,
    file: UploadFile = File(...),
    user=Depends(get_verified_user),
):
    log.info(f"file.content_type: {file.content_type}")

    if file.content_type not in ["audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a"]:
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED,
        )

    try:
        ext = file.filename.split(".")[-1]
        id = uuid.uuid4()

        filename = f"{id}.{ext}"
        contents = file.file.read()

        file_dir = f"{CACHE_DIR}/audio/transcriptions"
        os.makedirs(file_dir, exist_ok=True)
        file_path = f"{file_dir}/{filename}"

        with open(file_path, "wb") as f:
            f.write(contents)

        try:
            try:
                file_path = compress_audio(file_path)
            except Exception as e:
                log.exception(e)

                raise HTTPException(
                    status_code=status.HTTP_400_BAD_REQUEST,
                    detail=ERROR_MESSAGES.DEFAULT(e),
                )

            data = transcribe(request, file_path)
            file_path = file_path.split("/")[-1]
            return {**data, "filename": file_path}
        except Exception as e:
            log.exception(e)

            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=ERROR_MESSAGES.DEFAULT(e),
            )

    except Exception as e:
        log.exception(e)

        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


def get_available_models(request: Request) -> list[dict]:
    available_models = []
    if request.app.state.config.TTS_ENGINE == "openai":
        available_models = [{"id": "tts-1"}, {"id": "tts-1-hd"}]
    elif request.app.state.config.TTS_ENGINE == "elevenlabs":
        try:
            response = requests.get(
                "https://api.elevenlabs.io/v1/models",
                headers={
                    "xi-api-key": request.app.state.config.TTS_API_KEY,
                    "Content-Type": "application/json",
                },
                timeout=5,
            )
            response.raise_for_status()
            models = response.json()

            available_models = [
                {"name": model["name"], "id": model["model_id"]} for model in models
            ]
        except requests.RequestException as e:
            log.error(f"Error fetching voices: {str(e)}")
    return available_models


@router.get("/models")
async def get_models(request: Request, user=Depends(get_verified_user)):
    return {"models": get_available_models(request)}


def get_available_voices(request) -> dict:
    """Returns {voice_id: voice_name} dict"""
    available_voices = {}
    if request.app.state.config.TTS_ENGINE == "openai":
        available_voices = {
            "alloy": "alloy",
            "echo": "echo",
            "fable": "fable",
            "onyx": "onyx",
            "nova": "nova",
            "shimmer": "shimmer",
        }
    elif request.app.state.config.TTS_ENGINE == "elevenlabs":
        try:
            available_voices = get_elevenlabs_voices(
                api_key=request.app.state.config.TTS_API_KEY
            )
        except Exception:
            # Avoided @lru_cache with exception
            pass
    elif request.app.state.config.TTS_ENGINE == "azure":
        try:
            region = request.app.state.config.TTS_AZURE_SPEECH_REGION
            url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list"
            headers = {
                "Ocp-Apim-Subscription-Key": request.app.state.config.TTS_API_KEY
            }

            response = requests.get(url, headers=headers)
            response.raise_for_status()
            voices = response.json()

            for voice in voices:
                available_voices[voice["ShortName"]] = (
                    f"{voice['DisplayName']} ({voice['ShortName']})"
                )
        except requests.RequestException as e:
            log.error(f"Error fetching voices: {str(e)}")

    return available_voices


@lru_cache
def get_elevenlabs_voices(api_key: str) -> dict:
    """
    Note, set the following in your .env file to use Elevenlabs:
    AUDIO_TTS_ENGINE=elevenlabs
    AUDIO_TTS_API_KEY=sk_...  # Your Elevenlabs API key
    AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL  # From https://api.elevenlabs.io/v1/voices
    AUDIO_TTS_MODEL=eleven_multilingual_v2
    """

    try:
        # TODO: Add retries
        response = requests.get(
            "https://api.elevenlabs.io/v1/voices",
            headers={
                "xi-api-key": api_key,
                "Content-Type": "application/json",
            },
        )
        response.raise_for_status()
        voices_data = response.json()

        voices = {}
        for voice in voices_data.get("voices", []):
            voices[voice["voice_id"]] = voice["name"]
    except requests.RequestException as e:
        # Avoid @lru_cache with exception
        log.error(f"Error fetching voices: {str(e)}")
        raise RuntimeError(f"Error fetching voices: {str(e)}")

    return voices


@router.get("/voices")
async def get_voices(request: Request, user=Depends(get_verified_user)):
    return {
        "voices": [
            {"id": k, "name": v} for k, v in get_available_voices(request).items()
        ]
    }