Spaces:
Sleeping
Sleeping
File size: 54,982 Bytes
6842c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 |
import json
import logging
import mimetypes
import os
import shutil
import uuid
from datetime import datetime
from pathlib import Path
from typing import Iterator, List, Optional, Sequence, Union
from fastapi import (
Depends,
FastAPI,
File,
Form,
HTTPException,
UploadFile,
Request,
status,
APIRouter,
)
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import tiktoken
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
from langchain_core.documents import Document
from open_webui.models.files import FileModel, Files
from open_webui.models.knowledge import Knowledges
from open_webui.storage.provider import Storage
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
# Document loaders
from open_webui.retrieval.loaders.main import Loader
from open_webui.retrieval.loaders.youtube import YoutubeLoader
# Web search engines
from open_webui.retrieval.web.main import SearchResult
from open_webui.retrieval.web.utils import get_web_loader
from open_webui.retrieval.web.brave import search_brave
from open_webui.retrieval.web.kagi import search_kagi
from open_webui.retrieval.web.mojeek import search_mojeek
from open_webui.retrieval.web.duckduckgo import search_duckduckgo
from open_webui.retrieval.web.google_pse import search_google_pse
from open_webui.retrieval.web.jina_search import search_jina
from open_webui.retrieval.web.searchapi import search_searchapi
from open_webui.retrieval.web.searxng import search_searxng
from open_webui.retrieval.web.serper import search_serper
from open_webui.retrieval.web.serply import search_serply
from open_webui.retrieval.web.serpstack import search_serpstack
from open_webui.retrieval.web.tavily import search_tavily
from open_webui.retrieval.web.bing import search_bing
from open_webui.retrieval.utils import (
get_embedding_function,
get_model_path,
query_collection,
query_collection_with_hybrid_search,
query_doc,
query_doc_with_hybrid_search,
)
from open_webui.utils.misc import (
calculate_sha256_string,
)
from open_webui.utils.auth import get_admin_user, get_verified_user
from open_webui.config import (
ENV,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
RAG_RERANKING_MODEL_AUTO_UPDATE,
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
UPLOAD_DIR,
DEFAULT_LOCALE,
)
from open_webui.env import (
SRC_LOG_LEVELS,
DEVICE_TYPE,
DOCKER,
)
from open_webui.constants import ERROR_MESSAGES
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
##########################################
#
# Utility functions
#
##########################################
def get_ef(
engine: str,
embedding_model: str,
auto_update: bool = False,
):
ef = None
if embedding_model and engine == "":
from sentence_transformers import SentenceTransformer
try:
ef = SentenceTransformer(
get_model_path(embedding_model, auto_update),
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
except Exception as e:
log.debug(f"Error loading SentenceTransformer: {e}")
return ef
def get_rf(
reranking_model: str,
auto_update: bool = False,
):
rf = None
if reranking_model:
if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
try:
from open_webui.retrieval.models.colbert import ColBERT
rf = ColBERT(
get_model_path(reranking_model, auto_update),
env="docker" if DOCKER else None,
)
except Exception as e:
log.error(f"ColBERT: {e}")
raise Exception(ERROR_MESSAGES.DEFAULT(e))
else:
import sentence_transformers
try:
rf = sentence_transformers.CrossEncoder(
get_model_path(reranking_model, auto_update),
device=DEVICE_TYPE,
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
)
except:
log.error("CrossEncoder error")
raise Exception(ERROR_MESSAGES.DEFAULT("CrossEncoder error"))
return rf
##########################################
#
# API routes
#
##########################################
router = APIRouter()
class CollectionNameForm(BaseModel):
collection_name: Optional[str] = None
class ProcessUrlForm(CollectionNameForm):
url: str
class SearchForm(CollectionNameForm):
query: str
@router.get("/")
async def get_status(request: Request):
return {
"status": True,
"chunk_size": request.app.state.config.CHUNK_SIZE,
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
"template": request.app.state.config.RAG_TEMPLATE,
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
}
@router.get("/embedding")
async def get_embedding_config(request: Request, user=Depends(get_admin_user)):
return {
"status": True,
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"openai_config": {
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
"key": request.app.state.config.RAG_OPENAI_API_KEY,
},
"ollama_config": {
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
},
}
@router.get("/reranking")
async def get_reraanking_config(request: Request, user=Depends(get_admin_user)):
return {
"status": True,
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
}
class OpenAIConfigForm(BaseModel):
url: str
key: str
class OllamaConfigForm(BaseModel):
url: str
key: str
class EmbeddingModelUpdateForm(BaseModel):
openai_config: Optional[OpenAIConfigForm] = None
ollama_config: Optional[OllamaConfigForm] = None
embedding_engine: str
embedding_model: str
embedding_batch_size: Optional[int] = 1
@router.post("/embedding/update")
async def update_embedding_config(
request: Request, form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
):
log.info(
f"Updating embedding model: {request.app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
)
try:
request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
if form_data.openai_config is not None:
request.app.state.config.RAG_OPENAI_API_BASE_URL = (
form_data.openai_config.url
)
request.app.state.config.RAG_OPENAI_API_KEY = (
form_data.openai_config.key
)
if form_data.ollama_config is not None:
request.app.state.config.RAG_OLLAMA_BASE_URL = (
form_data.ollama_config.url
)
request.app.state.config.RAG_OLLAMA_API_KEY = (
form_data.ollama_config.key
)
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = (
form_data.embedding_batch_size
)
request.app.state.ef = get_ef(
request.app.state.config.RAG_EMBEDDING_ENGINE,
request.app.state.config.RAG_EMBEDDING_MODEL,
)
request.app.state.EMBEDDING_FUNCTION = get_embedding_function(
request.app.state.config.RAG_EMBEDDING_ENGINE,
request.app.state.config.RAG_EMBEDDING_MODEL,
request.app.state.ef,
(
request.app.state.config.RAG_OPENAI_API_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else request.app.state.config.RAG_OLLAMA_BASE_URL
),
(
request.app.state.config.RAG_OPENAI_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else request.app.state.config.RAG_OLLAMA_API_KEY
),
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
)
return {
"status": True,
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"openai_config": {
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
"key": request.app.state.config.RAG_OPENAI_API_KEY,
},
"ollama_config": {
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
},
}
except Exception as e:
log.exception(f"Problem updating embedding model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class RerankingModelUpdateForm(BaseModel):
reranking_model: str
@router.post("/reranking/update")
async def update_reranking_config(
request: Request, form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
):
log.info(
f"Updating reranking model: {request.app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
)
try:
request.app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model
try:
request.app.state.rf = get_rf(
request.app.state.config.RAG_RERANKING_MODEL,
True,
)
except Exception as e:
log.error(f"Error loading reranking model: {e}")
request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
return {
"status": True,
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
}
except Exception as e:
log.exception(f"Problem updating reranking model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@router.get("/config")
async def get_rag_config(request: Request, user=Depends(get_admin_user)):
return {
"status": True,
"pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES,
"enable_google_drive_integration": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
"content_extraction": {
"engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
"tika_server_url": request.app.state.config.TIKA_SERVER_URL,
},
"chunk": {
"text_splitter": request.app.state.config.TEXT_SPLITTER,
"chunk_size": request.app.state.config.CHUNK_SIZE,
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
},
"file": {
"max_size": request.app.state.config.FILE_MAX_SIZE,
"max_count": request.app.state.config.FILE_MAX_COUNT,
},
"youtube": {
"language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
"translation": request.app.state.YOUTUBE_LOADER_TRANSLATION,
"proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
},
"web": {
"web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
"search": {
"enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH,
"drive": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
"engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE,
"searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL,
"google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY,
"google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
"brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY,
"kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY,
"mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY,
"serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY,
"serpstack_https": request.app.state.config.SERPSTACK_HTTPS,
"serper_api_key": request.app.state.config.SERPER_API_KEY,
"serply_api_key": request.app.state.config.SERPLY_API_KEY,
"tavily_api_key": request.app.state.config.TAVILY_API_KEY,
"searchapi_api_key": request.app.state.config.SEARCHAPI_API_KEY,
"seaarchapi_engine": request.app.state.config.SEARCHAPI_ENGINE,
"jina_api_key": request.app.state.config.JINA_API_KEY,
"bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
"bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
"result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
"concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
},
},
}
class FileConfig(BaseModel):
max_size: Optional[int] = None
max_count: Optional[int] = None
class ContentExtractionConfig(BaseModel):
engine: str = ""
tika_server_url: Optional[str] = None
class ChunkParamUpdateForm(BaseModel):
text_splitter: Optional[str] = None
chunk_size: int
chunk_overlap: int
class YoutubeLoaderConfig(BaseModel):
language: list[str]
translation: Optional[str] = None
proxy_url: str = ""
class WebSearchConfig(BaseModel):
enabled: bool
engine: Optional[str] = None
searxng_query_url: Optional[str] = None
google_pse_api_key: Optional[str] = None
google_pse_engine_id: Optional[str] = None
brave_search_api_key: Optional[str] = None
kagi_search_api_key: Optional[str] = None
mojeek_search_api_key: Optional[str] = None
serpstack_api_key: Optional[str] = None
serpstack_https: Optional[bool] = None
serper_api_key: Optional[str] = None
serply_api_key: Optional[str] = None
tavily_api_key: Optional[str] = None
searchapi_api_key: Optional[str] = None
searchapi_engine: Optional[str] = None
jina_api_key: Optional[str] = None
bing_search_v7_endpoint: Optional[str] = None
bing_search_v7_subscription_key: Optional[str] = None
result_count: Optional[int] = None
concurrent_requests: Optional[int] = None
class WebConfig(BaseModel):
search: WebSearchConfig
web_loader_ssl_verification: Optional[bool] = None
class ConfigUpdateForm(BaseModel):
pdf_extract_images: Optional[bool] = None
enable_google_drive_integration: Optional[bool] = None
file: Optional[FileConfig] = None
content_extraction: Optional[ContentExtractionConfig] = None
chunk: Optional[ChunkParamUpdateForm] = None
youtube: Optional[YoutubeLoaderConfig] = None
web: Optional[WebConfig] = None
@router.post("/config/update")
async def update_rag_config(
request: Request, form_data: ConfigUpdateForm, user=Depends(get_admin_user)
):
request.app.state.config.PDF_EXTRACT_IMAGES = (
form_data.pdf_extract_images
if form_data.pdf_extract_images is not None
else request.app.state.config.PDF_EXTRACT_IMAGES
)
request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION = (
form_data.enable_google_drive_integration
if form_data.enable_google_drive_integration is not None
else request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION
)
if form_data.file is not None:
request.app.state.config.FILE_MAX_SIZE = form_data.file.max_size
request.app.state.config.FILE_MAX_COUNT = form_data.file.max_count
if form_data.content_extraction is not None:
log.info(f"Updating text settings: {form_data.content_extraction}")
request.app.state.config.CONTENT_EXTRACTION_ENGINE = (
form_data.content_extraction.engine
)
request.app.state.config.TIKA_SERVER_URL = (
form_data.content_extraction.tika_server_url
)
if form_data.chunk is not None:
request.app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter
request.app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size
request.app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
if form_data.youtube is not None:
request.app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language
request.app.state.config.YOUTUBE_LOADER_PROXY_URL = form_data.youtube.proxy_url
request.app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation
if form_data.web is not None:
request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
# Note: When UI "Bypass SSL verification for Websites"=True then ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION=False
form_data.web.web_loader_ssl_verification
)
request.app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled
request.app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine
request.app.state.config.SEARXNG_QUERY_URL = (
form_data.web.search.searxng_query_url
)
request.app.state.config.GOOGLE_PSE_API_KEY = (
form_data.web.search.google_pse_api_key
)
request.app.state.config.GOOGLE_PSE_ENGINE_ID = (
form_data.web.search.google_pse_engine_id
)
request.app.state.config.BRAVE_SEARCH_API_KEY = (
form_data.web.search.brave_search_api_key
)
request.app.state.config.KAGI_SEARCH_API_KEY = (
form_data.web.search.kagi_search_api_key
)
request.app.state.config.MOJEEK_SEARCH_API_KEY = (
form_data.web.search.mojeek_search_api_key
)
request.app.state.config.SERPSTACK_API_KEY = (
form_data.web.search.serpstack_api_key
)
request.app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
request.app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
request.app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
request.app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
request.app.state.config.SEARCHAPI_API_KEY = (
form_data.web.search.searchapi_api_key
)
request.app.state.config.SEARCHAPI_ENGINE = (
form_data.web.search.searchapi_engine
)
request.app.state.config.JINA_API_KEY = form_data.web.search.jina_api_key
request.app.state.config.BING_SEARCH_V7_ENDPOINT = (
form_data.web.search.bing_search_v7_endpoint
)
request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY = (
form_data.web.search.bing_search_v7_subscription_key
)
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = (
form_data.web.search.result_count
)
request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
form_data.web.search.concurrent_requests
)
return {
"status": True,
"pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES,
"file": {
"max_size": request.app.state.config.FILE_MAX_SIZE,
"max_count": request.app.state.config.FILE_MAX_COUNT,
},
"content_extraction": {
"engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
"tika_server_url": request.app.state.config.TIKA_SERVER_URL,
},
"chunk": {
"text_splitter": request.app.state.config.TEXT_SPLITTER,
"chunk_size": request.app.state.config.CHUNK_SIZE,
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
},
"youtube": {
"language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
"proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
"translation": request.app.state.YOUTUBE_LOADER_TRANSLATION,
},
"web": {
"web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
"search": {
"enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH,
"engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE,
"searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL,
"google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY,
"google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
"brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY,
"kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY,
"mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY,
"serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY,
"serpstack_https": request.app.state.config.SERPSTACK_HTTPS,
"serper_api_key": request.app.state.config.SERPER_API_KEY,
"serply_api_key": request.app.state.config.SERPLY_API_KEY,
"serachapi_api_key": request.app.state.config.SEARCHAPI_API_KEY,
"searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE,
"tavily_api_key": request.app.state.config.TAVILY_API_KEY,
"jina_api_key": request.app.state.config.JINA_API_KEY,
"bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
"bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
"result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
"concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
},
},
}
@router.get("/template")
async def get_rag_template(request: Request, user=Depends(get_verified_user)):
return {
"status": True,
"template": request.app.state.config.RAG_TEMPLATE,
}
@router.get("/query/settings")
async def get_query_settings(request: Request, user=Depends(get_admin_user)):
return {
"status": True,
"template": request.app.state.config.RAG_TEMPLATE,
"k": request.app.state.config.TOP_K,
"r": request.app.state.config.RELEVANCE_THRESHOLD,
"hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
}
class QuerySettingsForm(BaseModel):
k: Optional[int] = None
r: Optional[float] = None
template: Optional[str] = None
hybrid: Optional[bool] = None
@router.post("/query/settings/update")
async def update_query_settings(
request: Request, form_data: QuerySettingsForm, user=Depends(get_admin_user)
):
request.app.state.config.RAG_TEMPLATE = form_data.template
request.app.state.config.TOP_K = form_data.k if form_data.k else 4
request.app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
form_data.hybrid if form_data.hybrid else False
)
return {
"status": True,
"template": request.app.state.config.RAG_TEMPLATE,
"k": request.app.state.config.TOP_K,
"r": request.app.state.config.RELEVANCE_THRESHOLD,
"hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
}
####################################
#
# Document process and retrieval
#
####################################
def save_docs_to_vector_db(
request: Request,
docs,
collection_name,
metadata: Optional[dict] = None,
overwrite: bool = False,
split: bool = True,
add: bool = False,
) -> bool:
def _get_docs_info(docs: list[Document]) -> str:
docs_info = set()
# Trying to select relevant metadata identifying the document.
for doc in docs:
metadata = getattr(doc, "metadata", {})
doc_name = metadata.get("name", "")
if not doc_name:
doc_name = metadata.get("title", "")
if not doc_name:
doc_name = metadata.get("source", "")
if doc_name:
docs_info.add(doc_name)
return ", ".join(docs_info)
log.info(
f"save_docs_to_vector_db: document {_get_docs_info(docs)} {collection_name}"
)
# Check if entries with the same hash (metadata.hash) already exist
if metadata and "hash" in metadata:
result = VECTOR_DB_CLIENT.query(
collection_name=collection_name,
filter={"hash": metadata["hash"]},
)
if result is not None:
existing_doc_ids = result.ids[0]
if existing_doc_ids:
log.info(f"Document with hash {metadata['hash']} already exists")
raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)
if split:
if request.app.state.config.TEXT_SPLITTER in ["", "character"]:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=request.app.state.config.CHUNK_SIZE,
chunk_overlap=request.app.state.config.CHUNK_OVERLAP,
add_start_index=True,
)
elif request.app.state.config.TEXT_SPLITTER == "token":
log.info(
f"Using token text splitter: {request.app.state.config.TIKTOKEN_ENCODING_NAME}"
)
tiktoken.get_encoding(str(request.app.state.config.TIKTOKEN_ENCODING_NAME))
text_splitter = TokenTextSplitter(
encoding_name=str(request.app.state.config.TIKTOKEN_ENCODING_NAME),
chunk_size=request.app.state.config.CHUNK_SIZE,
chunk_overlap=request.app.state.config.CHUNK_OVERLAP,
add_start_index=True,
)
else:
raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter"))
docs = text_splitter.split_documents(docs)
if len(docs) == 0:
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
texts = [doc.page_content for doc in docs]
metadatas = [
{
**doc.metadata,
**(metadata if metadata else {}),
"embedding_config": json.dumps(
{
"engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"model": request.app.state.config.RAG_EMBEDDING_MODEL,
}
),
}
for doc in docs
]
# ChromaDB does not like datetime formats
# for meta-data so convert them to string.
for metadata in metadatas:
for key, value in metadata.items():
if isinstance(value, datetime):
metadata[key] = str(value)
try:
if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
log.info(f"collection {collection_name} already exists")
if overwrite:
VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
log.info(f"deleting existing collection {collection_name}")
elif add is False:
log.info(
f"collection {collection_name} already exists, overwrite is False and add is False"
)
return True
log.info(f"adding to collection {collection_name}")
embedding_function = get_embedding_function(
request.app.state.config.RAG_EMBEDDING_ENGINE,
request.app.state.config.RAG_EMBEDDING_MODEL,
request.app.state.ef,
(
request.app.state.config.RAG_OPENAI_API_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else request.app.state.config.RAG_OLLAMA_BASE_URL
),
(
request.app.state.config.RAG_OPENAI_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else request.app.state.config.RAG_OLLAMA_API_KEY
),
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
)
embeddings = embedding_function(
list(map(lambda x: x.replace("\n", " "), texts))
)
items = [
{
"id": str(uuid.uuid4()),
"text": text,
"vector": embeddings[idx],
"metadata": metadatas[idx],
}
for idx, text in enumerate(texts)
]
VECTOR_DB_CLIENT.insert(
collection_name=collection_name,
items=items,
)
return True
except Exception as e:
log.exception(e)
raise e
class ProcessFileForm(BaseModel):
file_id: str
content: Optional[str] = None
collection_name: Optional[str] = None
@router.post("/process/file")
def process_file(
request: Request,
form_data: ProcessFileForm,
user=Depends(get_verified_user),
):
try:
file = Files.get_file_by_id(form_data.file_id)
collection_name = form_data.collection_name
if collection_name is None:
collection_name = f"file-{file.id}"
if form_data.content:
# Update the content in the file
# Usage: /files/{file_id}/data/content/update
VECTOR_DB_CLIENT.delete_collection(collection_name=f"file-{file.id}")
docs = [
Document(
page_content=form_data.content.replace("<br/>", "\n"),
metadata={
**file.meta,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
]
text_content = form_data.content
elif form_data.collection_name:
# Check if the file has already been processed and save the content
# Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update
result = VECTOR_DB_CLIENT.query(
collection_name=f"file-{file.id}", filter={"file_id": file.id}
)
if result is not None and len(result.ids[0]) > 0:
docs = [
Document(
page_content=result.documents[0][idx],
metadata=result.metadatas[0][idx],
)
for idx, id in enumerate(result.ids[0])
]
else:
docs = [
Document(
page_content=file.data.get("content", ""),
metadata={
**file.meta,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
]
text_content = file.data.get("content", "")
else:
# Process the file and save the content
# Usage: /files/
file_path = file.path
if file_path:
file_path = Storage.get_file(file_path)
loader = Loader(
engine=request.app.state.config.CONTENT_EXTRACTION_ENGINE,
TIKA_SERVER_URL=request.app.state.config.TIKA_SERVER_URL,
PDF_EXTRACT_IMAGES=request.app.state.config.PDF_EXTRACT_IMAGES,
)
docs = loader.load(
file.filename, file.meta.get("content_type"), file_path
)
docs = [
Document(
page_content=doc.page_content,
metadata={
**doc.metadata,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
for doc in docs
]
else:
docs = [
Document(
page_content=file.data.get("content", ""),
metadata={
**file.meta,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
]
text_content = " ".join([doc.page_content for doc in docs])
log.debug(f"text_content: {text_content}")
Files.update_file_data_by_id(
file.id,
{"content": text_content},
)
hash = calculate_sha256_string(text_content)
Files.update_file_hash_by_id(file.id, hash)
try:
result = save_docs_to_vector_db(
request,
docs=docs,
collection_name=collection_name,
metadata={
"file_id": file.id,
"name": file.filename,
"hash": hash,
},
add=(True if form_data.collection_name else False),
)
if result:
Files.update_file_metadata_by_id(
file.id,
{
"collection_name": collection_name,
},
)
return {
"status": True,
"collection_name": collection_name,
"filename": file.filename,
"content": text_content,
}
except Exception as e:
raise e
except Exception as e:
log.exception(e)
if "No pandoc was found" in str(e):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=str(e),
)
class ProcessTextForm(BaseModel):
name: str
content: str
collection_name: Optional[str] = None
@router.post("/process/text")
def process_text(
request: Request,
form_data: ProcessTextForm,
user=Depends(get_verified_user),
):
collection_name = form_data.collection_name
if collection_name is None:
collection_name = calculate_sha256_string(form_data.content)
docs = [
Document(
page_content=form_data.content,
metadata={"name": form_data.name, "created_by": user.id},
)
]
text_content = form_data.content
log.debug(f"text_content: {text_content}")
result = save_docs_to_vector_db(request, docs, collection_name)
if result:
return {
"status": True,
"collection_name": collection_name,
"content": text_content,
}
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(),
)
@router.post("/process/youtube")
def process_youtube_video(
request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
):
try:
collection_name = form_data.collection_name
if not collection_name:
collection_name = calculate_sha256_string(form_data.url)[:63]
loader = YoutubeLoader(
form_data.url,
language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
)
docs = loader.load()
content = " ".join([doc.page_content for doc in docs])
log.debug(f"text_content: {content}")
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
return {
"status": True,
"collection_name": collection_name,
"filename": form_data.url,
"file": {
"data": {
"content": content,
},
"meta": {
"name": form_data.url,
},
},
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@router.post("/process/web")
def process_web(
request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
):
try:
collection_name = form_data.collection_name
if not collection_name:
collection_name = calculate_sha256_string(form_data.url)[:63]
loader = get_web_loader(
form_data.url,
verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
)
docs = loader.load()
content = " ".join([doc.page_content for doc in docs])
log.debug(f"text_content: {content}")
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
return {
"status": True,
"collection_name": collection_name,
"filename": form_data.url,
"file": {
"data": {
"content": content,
},
"meta": {
"name": form_data.url,
},
},
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
def search_web(request: Request, engine: str, query: str) -> list[SearchResult]:
"""Search the web using a search engine and return the results as a list of SearchResult objects.
Will look for a search engine API key in environment variables in the following order:
- SEARXNG_QUERY_URL
- GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
- BRAVE_SEARCH_API_KEY
- KAGI_SEARCH_API_KEY
- MOJEEK_SEARCH_API_KEY
- SERPSTACK_API_KEY
- SERPER_API_KEY
- SERPLY_API_KEY
- TAVILY_API_KEY
- SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
Args:
query (str): The query to search for
"""
# TODO: add playwright to search the web
if engine == "searxng":
if request.app.state.config.SEARXNG_QUERY_URL:
return search_searxng(
request.app.state.config.SEARXNG_QUERY_URL,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SEARXNG_QUERY_URL found in environment variables")
elif engine == "google_pse":
if (
request.app.state.config.GOOGLE_PSE_API_KEY
and request.app.state.config.GOOGLE_PSE_ENGINE_ID
):
return search_google_pse(
request.app.state.config.GOOGLE_PSE_API_KEY,
request.app.state.config.GOOGLE_PSE_ENGINE_ID,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception(
"No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
)
elif engine == "brave":
if request.app.state.config.BRAVE_SEARCH_API_KEY:
return search_brave(
request.app.state.config.BRAVE_SEARCH_API_KEY,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
elif engine == "kagi":
if request.app.state.config.KAGI_SEARCH_API_KEY:
return search_kagi(
request.app.state.config.KAGI_SEARCH_API_KEY,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No KAGI_SEARCH_API_KEY found in environment variables")
elif engine == "mojeek":
if request.app.state.config.MOJEEK_SEARCH_API_KEY:
return search_mojeek(
request.app.state.config.MOJEEK_SEARCH_API_KEY,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No MOJEEK_SEARCH_API_KEY found in environment variables")
elif engine == "serpstack":
if request.app.state.config.SERPSTACK_API_KEY:
return search_serpstack(
request.app.state.config.SERPSTACK_API_KEY,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
https_enabled=request.app.state.config.SERPSTACK_HTTPS,
)
else:
raise Exception("No SERPSTACK_API_KEY found in environment variables")
elif engine == "serper":
if request.app.state.config.SERPER_API_KEY:
return search_serper(
request.app.state.config.SERPER_API_KEY,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SERPER_API_KEY found in environment variables")
elif engine == "serply":
if request.app.state.config.SERPLY_API_KEY:
return search_serply(
request.app.state.config.SERPLY_API_KEY,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SERPLY_API_KEY found in environment variables")
elif engine == "duckduckgo":
return search_duckduckgo(
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
elif engine == "tavily":
if request.app.state.config.TAVILY_API_KEY:
return search_tavily(
request.app.state.config.TAVILY_API_KEY,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
)
else:
raise Exception("No TAVILY_API_KEY found in environment variables")
elif engine == "searchapi":
if request.app.state.config.SEARCHAPI_API_KEY:
return search_searchapi(
request.app.state.config.SEARCHAPI_API_KEY,
request.app.state.config.SEARCHAPI_ENGINE,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SEARCHAPI_API_KEY found in environment variables")
elif engine == "jina":
return search_jina(
request.app.state.config.JINA_API_KEY,
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
)
elif engine == "bing":
return search_bing(
request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
request.app.state.config.BING_SEARCH_V7_ENDPOINT,
str(DEFAULT_LOCALE),
query,
request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No search engine API key found in environment variables")
@router.post("/process/web/search")
def process_web_search(
request: Request, form_data: SearchForm, user=Depends(get_verified_user)
):
try:
logging.info(
f"trying to web search with {request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}"
)
web_results = search_web(
request, request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
)
log.debug(f"web_results: {web_results}")
try:
collection_name = form_data.collection_name
if collection_name == "" or collection_name is None:
collection_name = f"web-search-{calculate_sha256_string(form_data.query)}"[
:63
]
urls = [result.link for result in web_results]
loader = get_web_loader(
urls,
verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
)
docs = loader.load()
save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
return {
"status": True,
"collection_name": collection_name,
"filenames": urls,
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class QueryDocForm(BaseModel):
collection_name: str
query: str
k: Optional[int] = None
r: Optional[float] = None
hybrid: Optional[bool] = None
@router.post("/query/doc")
def query_doc_handler(
request: Request,
form_data: QueryDocForm,
user=Depends(get_verified_user),
):
try:
if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
return query_doc_with_hybrid_search(
collection_name=form_data.collection_name,
query=form_data.query,
embedding_function=request.app.state.EMBEDDING_FUNCTION,
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
reranking_function=request.app.state.rf,
r=(
form_data.r
if form_data.r
else request.app.state.config.RELEVANCE_THRESHOLD
),
)
else:
return query_doc(
collection_name=form_data.collection_name,
query_embedding=request.app.state.EMBEDDING_FUNCTION(form_data.query),
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class QueryCollectionsForm(BaseModel):
collection_names: list[str]
query: str
k: Optional[int] = None
r: Optional[float] = None
hybrid: Optional[bool] = None
@router.post("/query/collection")
def query_collection_handler(
request: Request,
form_data: QueryCollectionsForm,
user=Depends(get_verified_user),
):
try:
if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
return query_collection_with_hybrid_search(
collection_names=form_data.collection_names,
queries=[form_data.query],
embedding_function=request.app.state.EMBEDDING_FUNCTION,
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
reranking_function=request.app.state.rf,
r=(
form_data.r
if form_data.r
else request.app.state.config.RELEVANCE_THRESHOLD
),
)
else:
return query_collection(
collection_names=form_data.collection_names,
queries=[form_data.query],
embedding_function=request.app.state.EMBEDDING_FUNCTION,
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
####################################
#
# Vector DB operations
#
####################################
class DeleteForm(BaseModel):
collection_name: str
file_id: str
@router.post("/delete")
def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
try:
if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
file = Files.get_file_by_id(form_data.file_id)
hash = file.hash
VECTOR_DB_CLIENT.delete(
collection_name=form_data.collection_name,
metadata={"hash": hash},
)
return {"status": True}
else:
return {"status": False}
except Exception as e:
log.exception(e)
return {"status": False}
@router.post("/reset/db")
def reset_vector_db(user=Depends(get_admin_user)):
VECTOR_DB_CLIENT.reset()
Knowledges.delete_all_knowledge()
@router.post("/reset/uploads")
def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
folder = f"{UPLOAD_DIR}"
try:
# Check if the directory exists
if os.path.exists(folder):
# Iterate over all the files and directories in the specified directory
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove the file or link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove the directory
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
else:
print(f"The directory {folder} does not exist")
except Exception as e:
print(f"Failed to process the directory {folder}. Reason: {e}")
return True
if ENV == "dev":
@router.get("/ef/{text}")
async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
return {"result": request.app.state.EMBEDDING_FUNCTION(text)}
class BatchProcessFilesForm(BaseModel):
files: List[FileModel]
collection_name: str
class BatchProcessFilesResult(BaseModel):
file_id: str
status: str
error: Optional[str] = None
class BatchProcessFilesResponse(BaseModel):
results: List[BatchProcessFilesResult]
errors: List[BatchProcessFilesResult]
@router.post("/process/files/batch")
def process_files_batch(
request: Request,
form_data: BatchProcessFilesForm,
user=Depends(get_verified_user),
) -> BatchProcessFilesResponse:
"""
Process a batch of files and save them to the vector database.
"""
results: List[BatchProcessFilesResult] = []
errors: List[BatchProcessFilesResult] = []
collection_name = form_data.collection_name
# Prepare all documents first
all_docs: List[Document] = []
for file in form_data.files:
try:
text_content = file.data.get("content", "")
docs: List[Document] = [
Document(
page_content=text_content.replace("<br/>", "\n"),
metadata={
**file.meta,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
]
hash = calculate_sha256_string(text_content)
Files.update_file_hash_by_id(file.id, hash)
Files.update_file_data_by_id(file.id, {"content": text_content})
all_docs.extend(docs)
results.append(BatchProcessFilesResult(file_id=file.id, status="prepared"))
except Exception as e:
log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}")
errors.append(
BatchProcessFilesResult(file_id=file.id, status="failed", error=str(e))
)
# Save all documents in one batch
if all_docs:
try:
save_docs_to_vector_db(
request=request,
docs=all_docs,
collection_name=collection_name,
add=True,
)
# Update all files with collection name
for result in results:
Files.update_file_metadata_by_id(
result.file_id, {"collection_name": collection_name}
)
result.status = "completed"
except Exception as e:
log.error(
f"process_files_batch: Error saving documents to vector DB: {str(e)}"
)
for result in results:
result.status = "failed"
errors.append(
BatchProcessFilesResult(file_id=result.file_id, error=str(e))
)
return BatchProcessFilesResponse(results=results, errors=errors)
|