Spaces:
Running
Running
File size: 2,676 Bytes
6842c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import json
from open_webui.utils.misc import (
openai_chat_chunk_message_template,
openai_chat_completion_message_template,
)
def convert_response_ollama_to_openai(ollama_response: dict) -> dict:
model = ollama_response.get("model", "ollama")
message_content = ollama_response.get("message", {}).get("content", "")
response = openai_chat_completion_message_template(model, message_content)
return response
async def convert_streaming_response_ollama_to_openai(ollama_streaming_response):
async for data in ollama_streaming_response.body_iterator:
data = json.loads(data)
model = data.get("model", "ollama")
message_content = data.get("message", {}).get("content", "")
done = data.get("done", False)
usage = None
if done:
usage = {
"response_token/s": (
round(
(
(
data.get("eval_count", 0)
/ ((data.get("eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("eval_duration", 0) > 0
else "N/A"
),
"prompt_token/s": (
round(
(
(
data.get("prompt_eval_count", 0)
/ ((data.get("prompt_eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("prompt_eval_duration", 0) > 0
else "N/A"
),
"total_duration": data.get("total_duration", 0),
"load_duration": data.get("load_duration", 0),
"prompt_eval_count": data.get("prompt_eval_count", 0),
"prompt_eval_duration": data.get("prompt_eval_duration", 0),
"eval_count": data.get("eval_count", 0),
"eval_duration": data.get("eval_duration", 0),
"approximate_total": (
lambda s: f"{s // 3600}h{(s % 3600) // 60}m{s % 60}s"
)((data.get("total_duration", 0) or 0) // 1_000_000_000),
}
data = openai_chat_chunk_message_template(
model, message_content if not done else None, usage
)
line = f"data: {json.dumps(data)}\n\n"
yield line
yield "data: [DONE]\n\n"
|