Spaces:
Running
Running
import inspect | |
import logging | |
import re | |
from typing import Any, Awaitable, Callable, get_type_hints | |
from functools import update_wrapper, partial | |
from fastapi import Request | |
from pydantic import BaseModel, Field, create_model | |
from langchain_core.utils.function_calling import convert_to_openai_function | |
from open_webui.models.tools import Tools | |
from open_webui.models.users import UserModel | |
from open_webui.utils.plugin import load_tools_module_by_id | |
log = logging.getLogger(__name__) | |
def apply_extra_params_to_tool_function( | |
function: Callable, extra_params: dict | |
) -> Callable[..., Awaitable]: | |
sig = inspect.signature(function) | |
extra_params = {k: v for k, v in extra_params.items() if k in sig.parameters} | |
partial_func = partial(function, **extra_params) | |
if inspect.iscoroutinefunction(function): | |
update_wrapper(partial_func, function) | |
return partial_func | |
async def new_function(*args, **kwargs): | |
return partial_func(*args, **kwargs) | |
update_wrapper(new_function, function) | |
return new_function | |
# Mutation on extra_params | |
def get_tools( | |
request: Request, tool_ids: list[str], user: UserModel, extra_params: dict | |
) -> dict[str, dict]: | |
tools_dict = {} | |
for tool_id in tool_ids: | |
tools = Tools.get_tool_by_id(tool_id) | |
if tools is None: | |
continue | |
module = request.app.state.TOOLS.get(tool_id, None) | |
if module is None: | |
module, _ = load_tools_module_by_id(tool_id) | |
request.app.state.TOOLS[tool_id] = module | |
extra_params["__id__"] = tool_id | |
if hasattr(module, "valves") and hasattr(module, "Valves"): | |
valves = Tools.get_tool_valves_by_id(tool_id) or {} | |
module.valves = module.Valves(**valves) | |
if hasattr(module, "UserValves"): | |
extra_params["__user__"]["valves"] = module.UserValves( # type: ignore | |
**Tools.get_user_valves_by_id_and_user_id(tool_id, user.id) | |
) | |
for spec in tools.specs: | |
# Remove internal parameters | |
spec["parameters"]["properties"] = { | |
key: val | |
for key, val in spec["parameters"]["properties"].items() | |
if not key.startswith("__") | |
} | |
function_name = spec["name"] | |
# convert to function that takes only model params and inserts custom params | |
original_func = getattr(module, function_name) | |
callable = apply_extra_params_to_tool_function(original_func, extra_params) | |
# TODO: This needs to be a pydantic model | |
tool_dict = { | |
"toolkit_id": tool_id, | |
"callable": callable, | |
"spec": spec, | |
"pydantic_model": function_to_pydantic_model(callable), | |
"file_handler": hasattr(module, "file_handler") and module.file_handler, | |
"citation": hasattr(module, "citation") and module.citation, | |
} | |
# TODO: if collision, prepend toolkit name | |
if function_name in tools_dict: | |
log.warning(f"Tool {function_name} already exists in another tools!") | |
log.warning(f"Collision between {tools} and {tool_id}.") | |
log.warning(f"Discarding {tools}.{function_name}") | |
else: | |
tools_dict[function_name] = tool_dict | |
return tools_dict | |
def parse_description(docstring: str | None) -> str: | |
""" | |
Parse a function's docstring to extract the description. | |
Args: | |
docstring (str): The docstring to parse. | |
Returns: | |
str: The description. | |
""" | |
if not docstring: | |
return "" | |
lines = [line.strip() for line in docstring.strip().split("\n")] | |
description_lines: list[str] = [] | |
for line in lines: | |
if re.match(r":param", line) or re.match(r":return", line): | |
break | |
description_lines.append(line) | |
return "\n".join(description_lines) | |
def parse_docstring(docstring): | |
""" | |
Parse a function's docstring to extract parameter descriptions in reST format. | |
Args: | |
docstring (str): The docstring to parse. | |
Returns: | |
dict: A dictionary where keys are parameter names and values are descriptions. | |
""" | |
if not docstring: | |
return {} | |
# Regex to match `:param name: description` format | |
param_pattern = re.compile(r":param (\w+):\s*(.+)") | |
param_descriptions = {} | |
for line in docstring.splitlines(): | |
match = param_pattern.match(line.strip()) | |
if not match: | |
continue | |
param_name, param_description = match.groups() | |
if param_name.startswith("__"): | |
continue | |
param_descriptions[param_name] = param_description | |
return param_descriptions | |
def function_to_pydantic_model(func: Callable) -> type[BaseModel]: | |
""" | |
Converts a Python function's type hints and docstring to a Pydantic model, | |
including support for nested types, default values, and descriptions. | |
Args: | |
func: The function whose type hints and docstring should be converted. | |
model_name: The name of the generated Pydantic model. | |
Returns: | |
A Pydantic model class. | |
""" | |
type_hints = get_type_hints(func) | |
signature = inspect.signature(func) | |
parameters = signature.parameters | |
docstring = func.__doc__ | |
descriptions = parse_docstring(docstring) | |
tool_description = parse_description(docstring) | |
field_defs = {} | |
for name, param in parameters.items(): | |
type_hint = type_hints.get(name, Any) | |
default_value = param.default if param.default is not param.empty else ... | |
description = descriptions.get(name, None) | |
if not description: | |
field_defs[name] = type_hint, default_value | |
continue | |
field_defs[name] = type_hint, Field(default_value, description=description) | |
model = create_model(func.__name__, **field_defs) | |
model.__doc__ = tool_description | |
return model | |
def get_callable_attributes(tool: object) -> list[Callable]: | |
return [ | |
getattr(tool, func) | |
for func in dir(tool) | |
if callable(getattr(tool, func)) | |
and not func.startswith("__") | |
and not inspect.isclass(getattr(tool, func)) | |
] | |
def get_tools_specs(tool_class: object) -> list[dict]: | |
function_list = get_callable_attributes(tool_class) | |
models = map(function_to_pydantic_model, function_list) | |
return [convert_to_openai_function(tool) for tool in models] | |