Spaces:
Running
Running
File size: 30,059 Bytes
3698d0a dd4f101 3698d0a dd4f101 3698d0a dd4f101 79bea76 dd4f101 3698d0a dd4f101 3698d0a dd4f101 79bea76 dd4f101 3698d0a dd4f101 79bea76 dd4f101 3698d0a 5f0df3a 3698d0a dd4f101 79bea76 dd4f101 3698d0a 5f0df3a 3698d0a dd4f101 79bea76 dd4f101 3698d0a 5f0df3a 3698d0a 5f0df3a dd4f101 3698d0a 5f0df3a 3698d0a dd4f101 79bea76 dd4f101 3698d0a dd4f101 79bea76 3698d0a dd4f101 79bea76 dd4f101 3698d0a dd4f101 3698d0a dd4f101 3698d0a dd4f101 3698d0a dd4f101 3698d0a dd4f101 3698d0a 5f0df3a ed50ee5 5f0df3a dd4f101 5f0df3a ed50ee5 5f0df3a dd4f101 5f0df3a ed50ee5 dd4f101 ed50ee5 dd4f101 ed50ee5 dd4f101 ed50ee5 5f0df3a ed50ee5 5f0df3a c93009d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import numpy as np
from collections import defaultdict
from functools import partial
from typing import List
from model_util import get_module_tensors_matched
def calc_model_size_from_model(model_config, inference_config):
get_module_tensors_matched_partial = partial(get_module_tensors_matched, module_classes_dict = model_config['module_classes'])
parameter_count = defaultdict(float)
parameter_count['word_embedding'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'embed' in x and 'pos' not in x)])
parameter_count['positional_embedding'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'embed' in x and 'pos' in x)])
parameter_count['attention_Q'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'q' in x)])
parameter_count['attention_K'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'k' in x)])
parameter_count['attention_V'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and 'v' in x)])
parameter_count['attention_out'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'att' in x and ('out_' in x or 'o_' in x))])
parameter_count['layernorm'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'norm' in x)])
parameter_count['mlp_weights'] = sum([v.numel() for v in get_module_tensors_matched_partial(lambda x: 'fc' in x or 'mlp' in x)])
parameter_count['embedding_weights'] = parameter_count['word_embedding'] + parameter_count['positional_embedding']
parameter_count['attention_weights'] = parameter_count['attention_out'] + parameter_count['attention_Q'] + parameter_count['attention_K'] + parameter_count['attention_V']
return parameter_count
def model_size_estimate(model_config, inference_config):
parameter_count = {}
parameter_count['word_embedding'] = model_config['vocab_size']*model_config['hidden_size']
parameter_count['positional_embedding'] = model_config['max_position_embeddings']*model_config['hidden_size']
parameter_count['attention_Q'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_K'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_V'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['attention_out'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['hidden_size']/model_config['num_attention_heads']*model_config['num_attention_heads']
parameter_count['layernorm'] = 2*model_config['layernorm_operation']*model_config['num_hidden_layers']*model_config['hidden_size']
parameter_count['mlp1'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
parameter_count['mlp2'] = model_config['num_hidden_layers']*model_config['hidden_size']*model_config['intermediate_size']
parameter_count['embedding_weights'] = parameter_count['word_embedding'] + parameter_count['positional_embedding']
parameter_count['attention_weights'] = parameter_count['attention_out'] + parameter_count['attention_Q'] + parameter_count['attention_K'] + parameter_count['attention_V']
parameter_count['mlp_weights'] = parameter_count['mlp1'] + parameter_count['mlp2']
return parameter_count
def multiplication_in_int64(array):
return np.cumprod(np.array(array, dtype=np.int64))[-1]
def matrix_operation(shapeA, shapeB):
assert(shapeA[-1] == shapeB[0])
op = np.cumprod(np.array(shapeA[:-1], np.float64))
return multiplication_in_int64([2, op[-1], shapeA[-1], shapeB[-1]])
def word_embedding_operation(model_config, inference_config):
#Given:
#\begin{itemize}
# \item Matrix \( X \) of size \( B \times s \) (representing the batch size and sequence length respectively).
# \item Embedding matrix \( W_e \) of size \( n_{vocab} \times d_{model} \).
#\end{itemize}
#The resultant matrix after the multiplication will be of size \( B \times s \times d_{model} \).
#For each element in this resultant matrix, the number of FLOPs required is \( 2 \times n_{vocab} \). This is because for a single element in the output matrix, we have \( 2N \) FLOPs (with \( N \) being the common dimension), leading to the matrix multiplication FLOP count as:
#\begin{equation}
#2 \times B \times s \times n_{v ocab} \times d_{model}
#\end{equation}
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'embed' in x and 'pos' not in x, model_config['module_classes'])
if len(modules) > 0:
A = [inference_config['batchsize'], inference_config['input_seq_length'], modules[0][0]]
B = modules[0]
op_count = matrix_operation(A, B)
return op_count
A = [inference_config['batchsize'], inference_config['input_seq_length'], model_config['vocab_size']]
B = [model_config['vocab_size'], model_config['hidden_size']]
op_count = matrix_operation(A, B)
return op_count
def positional_embedding_operation(model_config, inference_config):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'embed' in x and 'pos' in x, model_config['module_classes'])
if len(modules) > 0:
return multiplication_in_int64([inference_config['batchsize'], inference_config['input_seq_length'], modules[0][-1]])
return multiplication_in_int64([inference_config['batchsize'], inference_config['input_seq_length'], model_config['hidden_size']])
### Below three are the same
def attention_K_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'att' in x and 'k' in x , model_config['module_classes'])
if len(modules) > 0:
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
total += model_config['num_attention_heads']*matrix_operation(A, B)
else:
total += model_config['hidden_size']
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
def attention_Q_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'att' in x and 'q' in x , model_config['module_classes'])
if len(modules) > 0:
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
total += model_config['num_attention_heads']*matrix_operation(A, B)
else:
total += model_config['hidden_size']
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
def attention_V_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'att' in x and 'v' in x , model_config['module_classes'])
if len(modules) > 0:
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
total += model_config['num_attention_heads']*matrix_operation(A, B)
else:
total += model_config['hidden_size']
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size_per_head']]
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
##
def attention_QK_operation(model_config, inference_config, seq_length_Q, seq_length_K):
A = [inference_config['batchsize'], seq_length_Q, model_config['hidden_size_per_head']]
B = [model_config['hidden_size_per_head'], seq_length_K]
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * matrix_operation(A, B)
def attention_softmax_operation(model_config, inference_config,seq_length):
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
# 3 is a modeled value
softmax_operation = (3*inference_config['batchsize']*seq_length*seq_length)
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * softmax_operation
def attention_multV_operation(model_config, inference_config, seq_length_Q, seq_length_V):
A = [inference_config['batchsize'], seq_length_Q, seq_length_V]
B = [seq_length_V, model_config['hidden_size_per_head']]
return model_config['num_hidden_layers'] * model_config['num_attention_heads']* matrix_operation(A, B)
def attention_out_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'att' in x and 'k' in x , model_config['module_classes'])
if len(modules) > 0:
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size']]
total += matrix_operation(A, B)
else:
total += model_config['hidden_size']
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['hidden_size']]
return model_config['num_hidden_layers'] * matrix_operation(A, B)
def layernorm_operation(model_config, inference_config, seq_length):
# Ref: Ouyang, A. (2023). Understanding the Performance of Transformer Inference (Doctoral dissertation, Massachusetts Institute of Technology).
# 5 is a modeled value
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'norm' in x, model_config['module_classes'])
if len(modules) > 0:
total = 0
for module in modules:
total += model_config['hidden_size']
return 5*total
layernorm_operation = (5*inference_config['batchsize']*seq_length*model_config['hidden_size'])
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * layernorm_operation
def mlp_operation(model_config, inference_config, seq_length):
if model_config['module_classes']:
modules = get_module_tensors_matched(lambda x: 'fc' in x or 'mlp' in x, model_config['module_classes'])
if len(modules) > 0:
total = 0
for module in modules:
if len(module) > 1:
A = [inference_config['batchsize'], seq_length, module[1]]
B = [module[1], module[0]]
total += matrix_operation(A, B)
else:
total += modules[-1][0]
return total
A = [inference_config['batchsize'], seq_length, model_config['hidden_size']]
B = [model_config['hidden_size'], model_config['intermediate_size']]
return model_config['num_hidden_layers'] * (2*matrix_operation(A, B))
def prefilling_operation(model_config, inference_config):
prefilling_operation_count = {}
prefilling_operation_count['word_embedding'] = word_embedding_operation(model_config, inference_config)
prefilling_operation_count['positional_embedding'] = positional_embedding_operation(model_config, inference_config)
prefilling_operation_count['attention_Q'] = attention_Q_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['attention_K'] = attention_K_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['attention_V'] = attention_V_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['attention_QK'] = attention_QK_operation(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
prefilling_operation_count['attention_softmax'] = attention_softmax_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['attention_multV'] = attention_multV_operation(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
prefilling_operation_count['attention_out'] = attention_out_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['layernorm'] =layernorm_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['mlp'] = mlp_operation(model_config, inference_config, inference_config['input_seq_length'])
prefilling_operation_count['embeddings'] = prefilling_operation_count['word_embedding'] + prefilling_operation_count['positional_embedding']
prefilling_operation_count['attention'] = sum([v for k,v in prefilling_operation_count.items() if 'attention' in k])
prefilling_operation_count['total'] = (prefilling_operation_count['embeddings'] + prefilling_operation_count['attention'] + prefilling_operation_count['mlp'] + prefilling_operation_count['layernorm'])
return prefilling_operation_count
def generation_operation(model_config, inference_config):
generation_operation_count = {}
generation_operation_count['word_embedding'] = 0
generation_operation_count['positional_embedding'] = 0
generation_operation_count['attention_K'] = 0
generation_operation_count['attention_V'] = 0
generation_operation_count['attention_Q'] = 0
generation_operation_count['attention_QK'] = 0
generation_operation_count['attention_softmax'] = 0
generation_operation_count['attention_multV'] = 0
generation_operation_count['attention_out'] = 0
generation_operation_count['mlp'] = 0
generation_operation_count['layernorm'] = 0
for t in range(inference_config['output_seq_length']):
if inference_config['KV_cache']:
generation_operation_count['attention_K'] += attention_K_operation(model_config, inference_config, 1)
generation_operation_count['attention_V'] += attention_V_operation(model_config, inference_config, 1)
generation_operation_count['attention_Q'] += attention_Q_operation(model_config, inference_config, 1)
generation_operation_count['attention_QK'] += attention_QK_operation(model_config, inference_config, seq_length_Q=1, seq_length_K=(t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_softmax'] += attention_softmax_operation(model_config, inference_config, 1)
generation_operation_count['attention_multV'] += attention_multV_operation(model_config, inference_config, seq_length_Q=1, seq_length_V=(t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_out'] += attention_out_operation(model_config, inference_config, 1)
generation_operation_count['mlp'] += mlp_operation(model_config, inference_config, 1)
else:
generation_operation_count['attention_K'] += attention_K_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_V'] += attention_V_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_Q'] += attention_Q_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_QK'] += attention_QK_operation(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_K=(t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_softmax'] += attention_softmax_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_multV'] += attention_multV_operation(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_V=(t+1)+inference_config['input_seq_length'])
generation_operation_count['attention_out'] += attention_out_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['mlp'] += mlp_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['layernorm'] += layernorm_operation(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
generation_operation_count['embeddings'] = generation_operation_count['word_embedding'] + generation_operation_count['positional_embedding']
generation_operation_count['attention'] = sum([v for k,v in generation_operation_count.items() if 'attention' in k])
generation_operation_count['total'] = (generation_operation_count['attention'] + generation_operation_count['mlp'] + generation_operation_count['layernorm'])
return generation_operation_count
def word_embedding_activation_memory(model_config, inference_config, seq_length):
return inference_config['batchsize'] * seq_length * (model_config['vocab_size'] + model_config['hidden_size'])
def positional_embedding_activation_memory(model_config, inference_config, seq_length):
return 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
def attention_K_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_V_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_Q_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['hidden_size_per_head'])
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_QK_activation_memory(model_config, inference_config, seq_length_Q, seq_length_K):
inputs_Q = inference_config['batchsize'] * seq_length_Q * model_config['hidden_size_per_head']
inputs_K = inference_config['batchsize'] * seq_length_K * model_config['hidden_size_per_head']
outputs = inference_config['batchsize'] * seq_length_Q * seq_length_K
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * (inputs_Q + inputs_K + outputs)
def attention_softmax_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = (2 * inference_config['batchsize'] * seq_length * seq_length)
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_multV_activation_memory(model_config, inference_config, seq_length_Q, seq_length_V):
per_head_per_layer = inference_config['batchsize'] * seq_length_Q * seq_length_V + inference_config['batchsize'] * seq_length_Q * model_config['hidden_size_per_head'] + inference_config['batchsize'] * seq_length_V * model_config['hidden_size_per_head']
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def attention_out_activation_memory(model_config, inference_config, seq_length):
per_head_per_layer = 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
return model_config['num_hidden_layers'] * model_config['num_attention_heads'] * per_head_per_layer
def layernorm_activation_memory(model_config, inference_config, seq_length):
per_layernorm_per_layer = 2 * inference_config['batchsize'] * seq_length * model_config['hidden_size']
return model_config['num_hidden_layers'] * model_config['layernorm_operation'] * per_layernorm_per_layer
def mlp_activation_memory(model_config, inference_config, seq_length):
# two mlp layer
per_layer = 2 * inference_config['batchsize'] * seq_length * (model_config['hidden_size'] + model_config['intermediate_size'])
return model_config['num_hidden_layers'] * per_layer
def prefilling_activation_memory(model_config, inference_config):
activation_memory = {}
activation_memory['word_embedding'] = word_embedding_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['positional_embedding'] = positional_embedding_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_Q'] = attention_Q_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_K'] = attention_K_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_V'] = attention_V_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_QK'] = attention_QK_activation_memory(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
activation_memory['attention_softmax'] = attention_softmax_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['attention_multV'] = attention_multV_activation_memory(model_config, inference_config, inference_config['input_seq_length'], inference_config['input_seq_length'])
activation_memory['attention_out'] = attention_out_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['layernorm'] = layernorm_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['mlp'] = mlp_activation_memory(model_config, inference_config, inference_config['input_seq_length'])
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
activation_memory['attention'] = (
activation_memory['attention_Q'] + activation_memory['attention_K'] +
activation_memory['attention_V'] + activation_memory['attention_QK'] +
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
activation_memory['attention_out']
)
activation_memory['total'] = (
activation_memory['embeddings'] + activation_memory['attention'] +
activation_memory['mlp'] + activation_memory['layernorm']
)
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
activation_memory['attention'] = sum([v for k,v in activation_memory.items() if 'attention' in k])
activation_memory['total'] = (activation_memory['attention'] + activation_memory['mlp'] + activation_memory['layernorm'])
return activation_memory
def generation_activation_memory(model_config, inference_config):
activation_memory = {}
activation_memory['word_embedding'] = 0
activation_memory['positional_embedding'] = 0
activation_memory['attention_K'] = 0
activation_memory['attention_V'] = 0
activation_memory['attention_Q'] = 0
activation_memory['attention_QK'] = 0
activation_memory['attention_softmax'] = 0
activation_memory['attention_multV'] = 0
activation_memory['attention_out'] = 0
activation_memory['mlp'] = 0
activation_memory['layernorm'] = 0
for t in range(inference_config['output_seq_length']):
if inference_config['KV_cache']:
activation_memory['attention_K'] += attention_K_activation_memory(model_config, inference_config, 1)
activation_memory['attention_V'] += attention_V_activation_memory(model_config, inference_config, 1)
activation_memory['attention_Q'] += attention_Q_activation_memory(model_config, inference_config, 1)
activation_memory['attention_QK'] += attention_QK_activation_memory(model_config, inference_config, seq_length_Q=1, seq_length_K=(t+1)+inference_config['input_seq_length'])
activation_memory['attention_softmax'] += attention_softmax_activation_memory(model_config, inference_config, 1)
activation_memory['attention_multV'] += attention_multV_activation_memory(model_config, inference_config, seq_length_Q=1, seq_length_V=(t+1)+inference_config['input_seq_length'])
activation_memory['attention_out'] += attention_out_activation_memory(model_config, inference_config, 1)
activation_memory['mlp'] += mlp_activation_memory(model_config, inference_config, 1)
else:
activation_memory['attention_K'] += attention_K_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['attention_V'] += attention_V_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['attention_Q'] += attention_Q_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['attention_QK'] += attention_QK_activation_memory(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_K=(t+1)+inference_config['input_seq_length'])
activation_memory['attention_softmax'] += attention_softmax_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['attention_multV'] += attention_multV_activation_memory(model_config, inference_config, seq_length_Q=(t+1)+inference_config['input_seq_length'], seq_length_V=(t+1)+inference_config['input_seq_length'])
activation_memory['attention_out'] += attention_out_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['mlp'] += mlp_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['layernorm'] += layernorm_activation_memory(model_config, inference_config, (t+1)+inference_config['input_seq_length'])
activation_memory['embeddings'] = activation_memory['word_embedding'] + activation_memory['positional_embedding']
activation_memory['attention'] = (
activation_memory['attention_K'] + activation_memory['attention_V'] +
activation_memory['attention_Q'] + activation_memory['attention_QK'] +
activation_memory['attention_softmax'] + activation_memory['attention_multV'] +
activation_memory['attention_out']
)
activation_memory['total'] = (
activation_memory['embeddings'] + activation_memory['attention'] +
activation_memory['mlp'] + activation_memory['layernorm']
)
return activation_memory
def calc_prefilling_throughput(model_config, inference_config, inference_info):
inference_info['prefilling_throughput'] = inference_config['input_seq_length']*inference_config['batchsize'] / max([inference_info['inference_prefilling_time'], inference_info['prefilling_memory_latency']])
inference_info['prefilling_bound_type'] = "memory" if inference_info['inference_prefilling_time'] < inference_info['prefilling_memory_latency'] else "arithmetic"
def calc_generation_throughput(model_config, inference_config, inference_info):
inference_info['generation_throughput'] = inference_config['input_seq_length']*inference_config['batchsize'] / max([inference_info['inference_generation_time'], inference_info['generation_memory_latency']])
inference_info['generation_bound_type'] = "memory" if inference_info['inference_generation_time'] < inference_info['generation_memory_latency'] else "arithmetic"
total_time = max([inference_info['inference_prefilling_time'], inference_info['prefilling_memory_latency']]) + max([inference_info['inference_generation_time'], inference_info['generation_memory_latency']])
inference_info['client_generation_throughput'] = inference_config['output_seq_length']*inference_config['batchsize'] / total_time |