# functional app from model import load_model, invert_audio import os preloaded = {} preloaded["model"], preloaded["processor"] = load_model() # Co for input_audio_path in data_dir.glob('*.wav'): print(os.path.basename(input_audio_path)) output_audio_path = os.path.join(output_dir, "inverted-" + os.path.basename(input_audio_path)) output_file = invert_audio( preloaded["model"], preloaded["processor"], input_audio_path, output_audio_path) # HuggingFace UI import streamlit as st import torch import julius st.title("Audio Inversion with HuggingFace & Streamlit") uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "flac"]) if uploaded_file: st.audio(uploaded_file, format="audio/wav") with st.spinner("Inverting audio..."): output_path = "inverted_output.wav" # Temporary output path. Consider using temp files or dynamic naming in production. invert_audio(model, processor, uploaded_file, output_path) st.audio(output_path, format="audio/wav") if st.button("Download Inverted Audio"): st.download_button("Download Inverted Audio", data=output_path, file_name="inverted_output.wav", mime="audio/wav")