marta-marta commited on
Commit
7e70cfa
1 Parent(s): e8a1ac5

Added TSNE Plot

Browse files
Data_Plotting/2D_Lattice.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb137b85f16095f396a65fd9f24327374ca4d855c95c29eb916ab3bfe08f596c
3
+ size 166090
Data_Plotting/Plot_TSNE.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.manifold import TSNE
2
+ import matplotlib.pyplot as plt
3
+ import numpy as np
4
+
5
+ # Latent Feature Cluster for Training Data using T-SNE
6
+ def TSNE_reduction(latent_points, perplexity=30, learning_rate=20):
7
+ latent_dimensionality = len(latent_points[0])
8
+ model = TSNE(n_components=2, random_state=0, perplexity=perplexity,
9
+ learning_rate=learning_rate) # Perplexity(5-50) | learning_rate(10-1000)
10
+ embedding = model
11
+ # configuring the parameters
12
+ # the number of components = dimension of the embedded space
13
+ # default perplexity = 30 " Perplexity balances the attention t-SNE gives to local and global aspects of the data.
14
+ # It is roughly a guess of the number of close neighbors each point has. ..a denser dataset ... requires higher perplexity value"
15
+ # default learning rate = 200 "If the learning rate is too high, the data may look like a ‘ball’ with any point
16
+ # approximately equidistant from its nearest neighbours. If the learning rate is too low,
17
+ # most points may look compressed in a dense cloud with few outliers."
18
+ tsne_data = model.fit_transform(
19
+ latent_points) # When there are more data points, trainX should be the first couple hundred points so TSNE doesn't take too long
20
+ x = tsne_data[:, 0]
21
+ y = tsne_data[:, 1]
22
+ title = ("T-SNE of Data")
23
+ return x, y, title, embedding
24
+
25
+
26
+ ########################################################################################################################
27
+ import pandas as pd
28
+ import json
29
+
30
+ df = pd.read_csv('2D_Lattice.csv')
31
+ row = 0
32
+ box = df.iloc[row,1]
33
+ array = np.array(json.loads(box))
34
+
35
+ """
36
+ # For plotting CSV data
37
+ # define a function to flatten a box
38
+ def flatten_box(box_str):
39
+ box = json.loads(box_str)
40
+ return np.array(box).flatten()
41
+
42
+
43
+ # apply the flatten_box function to each row of the dataframe and create a list of flattened arrays
44
+ flattened_arrays = df['Array'].apply(flatten_box).tolist()
45
+
46
+
47
+ x, y, title, embedding = TSNE_reduction(flattened_arrays)
48
+
49
+ plt.scatter(x,y)
50
+ plt.title(title)
51
+ plt.show()
52
+ """
53
+
54
+ # def plot_dimensionality_reduction(x, y, label_set, title):
55
+ # plt.title(title)
56
+ # if label_set[0].dtype == float:
57
+ # plt.scatter(x, y, c=label_set)
58
+ # plt.colorbar()
59
+ # print("using scatter")
60
+ # else:
61
+ # for label in set(label_set):
62
+ # cond = np.where(np.array(label_set) == str(label))
63
+ # plt.plot(x[cond], y[cond], marker='o', linestyle='none', label=label)
64
+ #
65
+ # plt.legend(numpoints=1)
66
+ #
67
+ # plt.show()
68
+ # plt.close()