coan commited on
Commit
d7771c4
·
verified ·
1 Parent(s): c5391c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -12
app.py CHANGED
@@ -1,20 +1,26 @@
 
1
  from sklearn.datasets import load_iris
2
  from sklearn.model_selection import train_test_split
3
  from sklearn.linear_model import LogisticRegression
4
  from joblib import dump
5
 
6
- # Carregar e dividir o dataset
7
- data = load_iris()
8
- X = data.data
9
- y = data.target
10
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
11
 
12
- # Treinando o modelo
13
- model = LogisticRegression()
14
- model.fit(X_train, y_train)
15
 
16
- # Salvar o modelo em um arquivo
17
- model_filename = "model.pkl"
18
- dump(model, model_filename)
 
 
19
 
20
- print("Modelo treinado e salvo!")
 
 
 
1
+ import gradio as gr
2
  from sklearn.datasets import load_iris
3
  from sklearn.model_selection import train_test_split
4
  from sklearn.linear_model import LogisticRegression
5
  from joblib import dump
6
 
7
+ def train_model():
8
+ # Carregar e dividir o dataset
9
+ data = load_iris()
10
+ X = data.data
11
+ y = data.target
12
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
13
 
14
+ # Treinando o modelo
15
+ model = LogisticRegression()
16
+ model.fit(X_train, y_train)
17
 
18
+ # Salvar o modelo em um arquivo na pasta /mnt/data/
19
+ model_filename = "/mnt/data/model.pkl"
20
+ dump(model, model_filename)
21
+
22
+ return f"Modelo treinado e salvo em: {model_filename}"
23
 
24
+ # Defina a interface Gradio
25
+ iface = gr.Interface(fn=train_model, inputs=[], outputs=["text"])
26
+ iface.launch()