import gradio as gr from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from joblib import dump import os def train_model(): # Carregar e dividir o dataset data = load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Treinando o modelo model = LogisticRegression() model.fit(X_train, y_train) # Criar diretório para salvar o modelo diretorio = "/mnt/data" os.makedirs(diretorio, exist_ok=True) # Salvar o modelo em /mnt/data/ model_filename = os.path.join(diretorio, "model.pkl") dump(model, model_filename) return f"Modelo treinado e salvo em: {model_filename}" # Inicialize a interface Gradio iface = gr.Interface(fn=train_model, inputs=[], outputs=["text"]) # Inicie a aplicação iface.launch()