File size: 9,512 Bytes
b971d47
 
 
 
 
 
cb6da82
b971d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6da82
 
 
 
b971d47
 
 
 
 
 
 
 
 
 
cb6da82
 
 
 
 
b971d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6da82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse, pickle
import logging
import os, random
import numpy as np
import torch
import torchaudio
import devicetorch

from data.tokenizer import (
    AudioTokenizer,
    TextTokenizer,
    tokenize_audio,
    tokenize_text
)

from models import voicecraft
import argparse, time, tqdm


# this script only works for the musicgen architecture
def get_args():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("--manifest_fn", type=str, default="path/to/eval_metadata_file")
    parser.add_argument("--audio_root", type=str, default="path/to/audio_folder")
    parser.add_argument("--exp_dir", type=str, default="path/to/model_folder")
    parser.add_argument("--seed", type=int, default=1)
    parser.add_argument("--codec_audio_sr", type=int, default=16000, help='the sample rate of audio that the codec is trained for')
    parser.add_argument("--codec_sr", type=int, default=50, help='the sample rate of the codec codes')
    parser.add_argument("--top_k", type=int, default=0, help="sampling param")
    parser.add_argument("--top_p", type=float, default=0.8, help="sampling param")
    parser.add_argument("--temperature", type=float, default=1.0, help="sampling param")
    parser.add_argument("--output_dir", type=str, default=None)
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--signature", type=str, default=None, help="path to the encodec model")
    parser.add_argument("--crop_concat", type=int, default=0)
    parser.add_argument("--stop_repetition", type=int, default=-1, help="used for inference, when the number of consecutive repetition of a token is bigger than this, stop it")
    parser.add_argument("--kvcache", type=int, default=1, help='if true, use kv cache, which is 4-8x faster than without')
    parser.add_argument("--sample_batch_size", type=int, default=1, help="batch size for sampling, NOTE that it's not running inference for several samples, but duplicate one input sample batch_size times, and during inference, we only return the shortest generation")
    parser.add_argument("--silence_tokens", type=str, default="[1388,1898,131]", help="note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default")
    return parser.parse_args()


@torch.no_grad()
def inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, device, decode_config, prompt_end_frame):
    # phonemize
    text_tokens = [phn2num[phn] for phn in
            tokenize_text(
                text_tokenizer, text=target_text.strip()
            ) if phn in phn2num
        ]
    text_tokens = torch.LongTensor(text_tokens).unsqueeze(0)
    text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]])

    # encode audio
    encoded_frames = tokenize_audio(audio_tokenizer, audio_fn, offset=0, num_frames=prompt_end_frame)
    original_audio = encoded_frames[0][0].transpose(2,1) # [1,T,K]
    assert original_audio.ndim==3 and original_audio.shape[0] == 1 and original_audio.shape[2] == model_args.n_codebooks, original_audio.shape
    logging.info(f"original audio length: {original_audio.shape[1]} codec frames, which is {original_audio.shape[1]/decode_config['codec_sr']:.2f} sec.")

    # forward
    stime = time.time()
    if decode_config['sample_batch_size'] <= 1:
        logging.info(f"running inference with batch size 1")
        concat_frames, gen_frames = model.inference_tts(
            text_tokens.to(device),
            text_tokens_lens.to(device),
            original_audio[...,:model_args.n_codebooks].to(device), # [1,T,8]
            top_k=decode_config['top_k'],
            top_p=decode_config['top_p'],
            temperature=decode_config['temperature'],
            stop_repetition=decode_config['stop_repetition'],
            kvcache=decode_config['kvcache'],
            silence_tokens=eval(decode_config['silence_tokens']) if type(decode_config['silence_tokens'])==str else decode_config['silence_tokens']
        ) # output is [1,K,T]
    else:
        logging.info(f"running inference with batch size {decode_config['sample_batch_size']}, i.e. return the shortest among {decode_config['sample_batch_size']} generations.")
        concat_frames, gen_frames = model.inference_tts_batch(
            text_tokens.to(device),
            text_tokens_lens.to(device),
            original_audio[...,:model_args.n_codebooks].to(device), # [1,T,8]
            top_k=decode_config['top_k'],
            top_p=decode_config['top_p'],
            temperature=decode_config['temperature'],
            stop_repetition=decode_config['stop_repetition'],
            kvcache=decode_config['kvcache'],
            batch_size = decode_config['sample_batch_size'],
            silence_tokens=eval(decode_config['silence_tokens']) if type(decode_config['silence_tokens'])==str else decode_config['silence_tokens']
        ) # output is [1,K,T]
    logging.info(f"inference on one sample take: {time.time() - stime:.4f} sec.")

    logging.info(f"generated encoded_frames.shape: {gen_frames.shape}, which is {gen_frames.shape[-1]/decode_config['codec_sr']} sec.")
    
    # for timestamp, codes in enumerate(gen_frames[0].transpose(1,0)):
    #     logging.info(f"{timestamp}: {codes.tolist()}")
    # decode (both original and generated)
    concat_sample = audio_tokenizer.decode(
        [(concat_frames, None)] # [1,T,8] -> [1,8,T]
    )
    gen_sample = audio_tokenizer.decode(
        [(gen_frames, None)]
    )

    # return
    return concat_sample, gen_sample

def get_model(exp_dir, device=None):
    with open(os.path.join(exp_dir, "args.pkl"), "rb") as f:
        model_args = pickle.load(f)

    logging.info("load model weights...")
    model = voicecraft.VoiceCraft(model_args)
    ckpt_fn = os.path.join(exp_dir, "best_bundle.pth")
    ckpt = torch.load(ckpt_fn, map_location='cpu')['model']
    phn2num = torch.load(ckpt_fn, map_location='cpu')['phn2num']
    model.load_state_dict(ckpt)
    del ckpt
    logging.info("done loading weights...")
    if device == None:
        device = devicetorch.get(torch)
#        device = torch.device("cpu")
#        if torch.cuda.is_available():
#            device = torch.device("cuda:0")
    model.to(device)
    model.eval()
    return model, model_args, phn2num

if __name__ == "__main__":
    def seed_everything(seed):
        os.environ['PYTHONHASHSEED'] = str(seed)
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        device = devicetorch.get(torch)
        if device == "cuda":
            torch.cuda.manual_seed(seed)
        elif device == "mps":
            torch.mps.manual_seed(seed)
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
    formatter = (
        "%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s"
    )
    logging.basicConfig(format=formatter, level=logging.INFO)
    args = get_args()
    # args.device='cpu'
    seed_everything(args.seed)
    
    os.makedirs(args.output_dir, exist_ok=True)
    # load model

    with open(args.manifest_fn, "r") as rf:
        manifest = [l.strip().split("\t") for l in rf.readlines()]
    manifest = manifest[1:]
    manifest = [[item[0], item[2], item[3], item[1], item[5]] for item in manifest]
    
    stime = time.time()
    logging.info(f"loading model from {args.exp_dir}")
    model, model_args, phn2num = get_model(args.exp_dir)
    logging.info(f"loading model done, took {time.time() - stime:.4f} sec")

    # setup text and audio tokenizer
    text_tokenizer = TextTokenizer(backend="espeak")
    audio_tokenizer = AudioTokenizer(signature=args.signature) # will also put the neural codec model on gpu
    
    audio_fns = []
    texts = []
    prompt_end_frames = []
    new_audio_fns = []
    text_to_syn = []

    for item in manifest:
        audio_fn = os.path.join(args.audio_root, item[0])
        audio_fns.append(audio_fn)
        temp = torchaudio.info(audio_fn)
        prompt_end_frames.append(round(float(item[2])*temp.sample_rate))
        texts.append(item[1])
        new_audio_fns.append(item[-2])
        all_text = item[1].split(" ")
        start_ind = int(item[-1].split(",")[0])
        text_to_syn.append(" ".join(all_text[start_ind:]))

    for i, (audio_fn, text, prompt_end_frame, new_audio_fn, to_syn) in enumerate(tqdm.tqdm((zip(audio_fns, texts, prompt_end_frames, new_audio_fns, text_to_syn)))):
        output_expected_sr = args.codec_audio_sr
        concated_audio, gen_audio = inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, text, args.device, vars(args), prompt_end_frame)
    
        # save segments for comparison
        concated_audio, gen_audio = concated_audio[0].cpu(), gen_audio[0].cpu()
        if output_expected_sr != args.codec_audio_sr:
            gen_audio = torchaudio.transforms.Resample(output_expected_sr, args.codec_audio_sr)(gen_audio)
            concated_audio = torchaudio.transforms.Resample(output_expected_sr, args.codec_audio_sr)(concated_audio)

        seg_save_fn_gen = f"{args.output_dir}/gen_{new_audio_fn[:-4]}_{i}_seed{args.seed}.wav"
        seg_save_fn_concat = f"{args.output_dir}/concat_{new_audio_fn[:-4]}_{i}_seed{args.seed}.wav"        

        torchaudio.save(seg_save_fn_gen, gen_audio, args.codec_audio_sr)
        torchaudio.save(seg_save_fn_concat, concated_audio, args.codec_audio_sr)