Spaces:
Runtime error
Runtime error
cocktailpeanut
commited on
Commit
·
7d6f42b
1
Parent(s):
f5d52fb
update
Browse files
app.py
CHANGED
@@ -44,11 +44,14 @@ def init():
|
|
44 |
# The undistilled model that uses CFG ("pro") which can use negative prompts
|
45 |
# was not released.
|
46 |
bfl_repo = "cocktailpeanut/xulf-s"
|
|
|
47 |
|
48 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler")
|
49 |
-
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
|
|
50 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
51 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
|
|
|
52 |
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
|
53 |
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
|
54 |
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
|
|
|
44 |
# The undistilled model that uses CFG ("pro") which can use negative prompts
|
45 |
# was not released.
|
46 |
bfl_repo = "cocktailpeanut/xulf-s"
|
47 |
+
te_repo = "comfyanonymous/flux_text_encoders"
|
48 |
|
49 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler")
|
50 |
+
#text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
51 |
+
text_encoder = CLIPTextModel.from_pretrained("./flux_text_encoders/clip_l.safetensors", torch_dtype=dtype)
|
52 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
53 |
+
#text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
|
54 |
+
text_encoder_2 = T5EncoderModel.from_pretrained("./flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors", torch_dtype=dtype)
|
55 |
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
|
56 |
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
|
57 |
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
|