File size: 8,052 Bytes
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from typing import Optional, Tuple

import numpy as np
import torch
import torch.nn as nn
from jaxtyping import Float, Integer
from torch import Tensor

from .mesh import Mesh


class IsosurfaceHelper(nn.Module):
    points_range: Tuple[float, float] = (0, 1)

    @property
    def grid_vertices(self) -> Float[Tensor, "N 3"]:
        raise NotImplementedError

    @property
    def requires_instance_per_batch(self) -> bool:
        return False


class MarchingTetrahedraHelper(IsosurfaceHelper):
    def __init__(self, resolution: int, tets_path: str):
        super().__init__()
        self.resolution = resolution
        self.tets_path = tets_path

        self.triangle_table: Float[Tensor, "..."]
        self.register_buffer(
            "triangle_table",
            torch.as_tensor(
                [
                    [-1, -1, -1, -1, -1, -1],
                    [1, 0, 2, -1, -1, -1],
                    [4, 0, 3, -1, -1, -1],
                    [1, 4, 2, 1, 3, 4],
                    [3, 1, 5, -1, -1, -1],
                    [2, 3, 0, 2, 5, 3],
                    [1, 4, 0, 1, 5, 4],
                    [4, 2, 5, -1, -1, -1],
                    [4, 5, 2, -1, -1, -1],
                    [4, 1, 0, 4, 5, 1],
                    [3, 2, 0, 3, 5, 2],
                    [1, 3, 5, -1, -1, -1],
                    [4, 1, 2, 4, 3, 1],
                    [3, 0, 4, -1, -1, -1],
                    [2, 0, 1, -1, -1, -1],
                    [-1, -1, -1, -1, -1, -1],
                ],
                dtype=torch.long,
            ),
            persistent=False,
        )
        self.num_triangles_table: Integer[Tensor, "..."]
        self.register_buffer(
            "num_triangles_table",
            torch.as_tensor(
                [0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long
            ),
            persistent=False,
        )
        self.base_tet_edges: Integer[Tensor, "..."]
        self.register_buffer(
            "base_tet_edges",
            torch.as_tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long),
            persistent=False,
        )

        tets = np.load(self.tets_path)
        self._grid_vertices: Float[Tensor, "..."]
        self.register_buffer(
            "_grid_vertices",
            torch.from_numpy(tets["vertices"]).float(),
            persistent=False,
        )
        self.indices: Integer[Tensor, "..."]
        self.register_buffer(
            "indices", torch.from_numpy(tets["indices"]).long(), persistent=False
        )

        self._all_edges: Optional[Integer[Tensor, "Ne 2"]] = None

        center_indices, boundary_indices = self.get_center_boundary_index(
            self._grid_vertices
        )
        self.center_indices: Integer[Tensor, "..."]
        self.register_buffer("center_indices", center_indices, persistent=False)
        self.boundary_indices: Integer[Tensor, "..."]
        self.register_buffer("boundary_indices", boundary_indices, persistent=False)

    def get_center_boundary_index(self, verts):
        magn = torch.sum(verts**2, dim=-1)

        center_idx = torch.argmin(magn)
        boundary_neg = verts == verts.max()
        boundary_pos = verts == verts.min()

        boundary = torch.bitwise_or(boundary_pos, boundary_neg)
        boundary = torch.sum(boundary.float(), dim=-1)

        boundary_idx = torch.nonzero(boundary)
        return center_idx, boundary_idx.squeeze(dim=-1)

    def normalize_grid_deformation(
        self, grid_vertex_offsets: Float[Tensor, "Nv 3"]
    ) -> Float[Tensor, "Nv 3"]:
        return (
            (self.points_range[1] - self.points_range[0])
            / self.resolution  # half tet size is approximately 1 / self.resolution
            * torch.tanh(grid_vertex_offsets)
        )  # FIXME: hard-coded activation

    @property
    def grid_vertices(self) -> Float[Tensor, "Nv 3"]:
        return self._grid_vertices

    @property
    def all_edges(self) -> Integer[Tensor, "Ne 2"]:
        if self._all_edges is None:
            # compute edges on GPU, or it would be VERY SLOW (basically due to the unique operation)
            edges = torch.tensor(
                [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3],
                dtype=torch.long,
                device=self.indices.device,
            )
            _all_edges = self.indices[:, edges].reshape(-1, 2)
            _all_edges_sorted = torch.sort(_all_edges, dim=1)[0]
            _all_edges = torch.unique(_all_edges_sorted, dim=0)
            self._all_edges = _all_edges
        return self._all_edges

    def sort_edges(self, edges_ex2):
        with torch.no_grad():
            order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long()
            order = order.unsqueeze(dim=1)

            a = torch.gather(input=edges_ex2, index=order, dim=1)
            b = torch.gather(input=edges_ex2, index=1 - order, dim=1)

        return torch.stack([a, b], -1)

    def _forward(self, pos_nx3, sdf_n, tet_fx4):
        with torch.no_grad():
            occ_n = sdf_n > 0
            occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
            occ_sum = torch.sum(occ_fx4, -1)
            valid_tets = (occ_sum > 0) & (occ_sum < 4)
            occ_sum = occ_sum[valid_tets]

            # find all vertices
            all_edges = tet_fx4[valid_tets][:, self.base_tet_edges].reshape(-1, 2)
            all_edges = self.sort_edges(all_edges)
            unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)

            unique_edges = unique_edges.long()
            mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
            mapping = (
                torch.ones(
                    (unique_edges.shape[0]), dtype=torch.long, device=pos_nx3.device
                )
                * -1
            )
            mapping[mask_edges] = torch.arange(
                mask_edges.sum(), dtype=torch.long, device=pos_nx3.device
            )
            idx_map = mapping[idx_map]  # map edges to verts

            interp_v = unique_edges[mask_edges]
        edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
        edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
        edges_to_interp_sdf[:, -1] *= -1

        denominator = edges_to_interp_sdf.sum(1, keepdim=True)

        edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
        verts = (edges_to_interp * edges_to_interp_sdf).sum(1)

        idx_map = idx_map.reshape(-1, 6)

        v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=pos_nx3.device))
        tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
        num_triangles = self.num_triangles_table[tetindex]

        # Generate triangle indices
        faces = torch.cat(
            (
                torch.gather(
                    input=idx_map[num_triangles == 1],
                    dim=1,
                    index=self.triangle_table[tetindex[num_triangles == 1]][:, :3],
                ).reshape(-1, 3),
                torch.gather(
                    input=idx_map[num_triangles == 2],
                    dim=1,
                    index=self.triangle_table[tetindex[num_triangles == 2]][:, :6],
                ).reshape(-1, 3),
            ),
            dim=0,
        )

        return verts, faces

    def forward(
        self,
        level: Float[Tensor, "N3 1"],
        deformation: Optional[Float[Tensor, "N3 3"]] = None,
    ) -> Mesh:
        if deformation is not None:
            grid_vertices = self.grid_vertices + self.normalize_grid_deformation(
                deformation
            )
        else:
            grid_vertices = self.grid_vertices

        v_pos, t_pos_idx = self._forward(grid_vertices, level, self.indices)

        mesh = Mesh(
            v_pos=v_pos,
            t_pos_idx=t_pos_idx,
            # extras
            grid_vertices=grid_vertices,
            tet_edges=self.all_edges,
            grid_level=level,
            grid_deformation=deformation,
        )

        return mesh