File size: 17,089 Bytes
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn

from sf3d.models.utils import BaseModule


class GEGLU(nn.Module):
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def gelu(self, gate: torch.Tensor) -> torch.Tensor:
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states, scale: float = 1.0):
        args = ()
        hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
        return hidden_states * self.gelu(gate)


class CrossAttention(nn.Module):
    def __init__(
        self,
        dim,
        kv_dim=None,
        num_heads=16,
        qkv_bias=False,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5
        kv_dim = dim if not kv_dim else kv_dim
        self.wq = nn.Linear(dim, dim, bias=qkv_bias)
        self.wk = nn.Linear(kv_dim, dim, bias=qkv_bias)
        self.wv = nn.Linear(kv_dim, dim, bias=qkv_bias)
        self.attn_drop = attn_drop
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x_q, x_kv):
        B, N_q, C = x_q.shape
        B, N_kv, _ = x_kv.shape
        # [B, N_q, C] -> [B, N_q, H, C/H]
        q = self.wq(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads)
        # [B, N_kv, C] -> [B, N_kv, H, C/H]
        k = self.wk(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
        v = self.wv(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)

        #  attention
        x = torch.nn.functional.scaled_dot_product_attention(
            q.permute(0, 2, 1, 3),
            k.permute(0, 2, 1, 3),
            v.permute(0, 2, 1, 3),
            attn_mask=None,
            dropout_p=self.attn_drop,
            scale=self.scale,
        ).permute(0, 2, 1, 3)

        # [B, N_q, H, C/H] -> [B, N_q, C]
        x = x.reshape(B, N_q, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class FeedForward(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim
        act_fn = GEGLU(dim, inner_dim)
        self.net = nn.ModuleList([])
        self.net.append(act_fn)
        self.net.append(nn.Dropout(dropout))
        self.net.append(nn.Linear(inner_dim, dim_out))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for module in self.net:
            x = module(x)
        return x


class BasicBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        kv_dim: Optional[int] = None,
        num_heads: int = 16,
        qkv_bias: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        ff_drop: float = 0.0,
    ):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim)
        self.attn1 = CrossAttention(
            dim,
            kv_dim=dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        self.norm2 = nn.LayerNorm(dim)
        self.attn2 = CrossAttention(
            dim,
            kv_dim=kv_dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        self.norm3 = nn.LayerNorm(dim)
        self.ff = FeedForward(dim, dropout=ff_drop)

    def forward(self, z, x):
        z_norm = self.norm1(z)
        z = z + self.attn1(z_norm, z_norm)
        # TODO: do we need to have the second attention when x is None?
        z_norm = self.norm2(z)
        z = z + self.attn2(z_norm, x if x is not None else z_norm)
        z_norm = self.norm3(z)
        z = z + self.ff(z_norm)
        return z


class SingleStreamTransformer(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        num_attention_heads: int = 16
        attention_head_dim: int = 88
        in_channels: Optional[int] = None
        out_channels: Optional[int] = None
        num_layers: int = 16
        dropout: float = 0.0
        norm_num_groups: int = 32
        cross_attention_dim: Optional[int] = None
        attention_bias: bool = False

    cfg: Config

    def configure(self) -> None:
        self.num_attention_heads = self.cfg.num_attention_heads
        self.attention_head_dim = self.cfg.attention_head_dim
        inner_dim = self.num_attention_heads * self.attention_head_dim

        # Define input layers
        self.norm = torch.nn.GroupNorm(
            num_groups=self.cfg.norm_num_groups,
            num_channels=self.cfg.in_channels,
            eps=1e-6,
            affine=True,
        )
        self.proj_in = nn.Linear(self.cfg.in_channels, inner_dim)

        # Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicBlock(
                    inner_dim,
                    kv_dim=self.cfg.cross_attention_dim,
                    num_heads=self.num_attention_heads,
                    qkv_bias=self.cfg.attention_bias,
                    proj_drop=self.cfg.dropout,
                    ff_drop=self.cfg.dropout,
                )
                for d in range(self.cfg.num_layers)
            ]
        )

        # 4. Define output layers
        self.proj_out = nn.Linear(inner_dim, self.cfg.in_channels)

    def forward(self, hidden_states, encoder_hidden_states=None, **kwargs):
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
        hidden_states = hidden_states.permute(0, 2, 1)
        hidden_states = self.proj_in(hidden_states)
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, encoder_hidden_states)
        hidden_states = self.proj_out(hidden_states).permute(0, 2, 1).contiguous()
        # TODO: do we really need to add the residual?
        hidden_states = hidden_states + residual
        return hidden_states


class FuseBlock(nn.Module):
    """
    Fuse X in to Z with cross attention
    """

    def __init__(
        self,
        dim_z: int,
        dim_x: int,
        num_heads: int = 16,
        qkv_bias: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        ff_drop: float = 0.0,
        norm_x_input: bool = True,
    ):
        super().__init__()
        self.norm_x_input = norm_x_input
        if self.norm_x_input:
            self.norm_x = nn.LayerNorm(dim_x)
        self.attn = CrossAttention(
            dim_z,
            kv_dim=dim_x,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        self.norm_z1 = nn.LayerNorm(dim_z)
        self.norm_z2 = nn.LayerNorm(dim_z)
        self.ff = FeedForward(dim_z, dropout=ff_drop)

    def forward(self, z, x):
        # TODO: do we need to normalize x?
        z = z + self.attn(self.norm_z1(z), self.norm_x(x) if self.norm_x_input else x)
        z = z + self.ff(self.norm_z2(z))
        return z


@torch.no_grad()
def get_triplane_attention_mask(res):
    N = 3 * res * res
    attn_mask = torch.zeros(3, res, res, 3, res, res)

    i, j = torch.meshgrid(torch.arange(res), torch.arange(res))

    attn_mask[0, i, j, 1, i, :] = 1.0
    attn_mask[0, i, j, 2, j, :] = 1.0
    attn_mask[1, i, j, 0, i, :] = 1.0
    attn_mask[1, i, j, 2, :, j] = 1.0
    attn_mask[2, i, j, 0, :, i] = 1.0
    attn_mask[2, i, j, 1, :, j] = 1.0
    attn_mask = attn_mask.bool()

    attn_bias = torch.empty_like(attn_mask, dtype=torch.float)
    attn_bias.masked_fill_(attn_mask, 0.0)
    attn_bias.masked_fill_(~attn_mask, float("-inf"))

    return attn_bias.reshape(N, N)


class TriplaneAttention(nn.Module):
    def __init__(
        self,
        dim: int,
        resolution: int,
        num_heads: int = 16,
        qkv_bias: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        full_attention: bool = False,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5
        self.wq = nn.Linear(dim, dim, bias=qkv_bias)
        self.wk = nn.Linear(dim, dim, bias=qkv_bias)
        self.wv = nn.Linear(dim, dim, bias=qkv_bias)
        self.attn_drop = attn_drop
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.resolution = resolution
        self.full_attention = full_attention
        self.attn_mask = (
            get_triplane_attention_mask(resolution) if not full_attention else None
        )

    def forward(self, x):
        B, N, C = x.shape
        # [B, N, C] -> [B, N, H, C/H]
        q = self.wq(x).reshape(B, N, self.num_heads, C // self.num_heads)
        k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads)
        v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads)

        # detokenize the planes
        assert N == self.resolution**2 * 3
        attn_bias = (
            self.attn_mask.to(q)
            .unsqueeze(0)
            .unsqueeze(0)
            .expand(B, self.num_heads, -1, -1)
            if not self.full_attention
            else None
        )

        # full attention
        x = torch.nn.functional.scaled_dot_product_attention(
            q.permute(0, 2, 1, 3),
            k.permute(0, 2, 1, 3),
            v.permute(0, 2, 1, 3),
            attn_mask=attn_bias,
            dropout_p=self.attn_drop,
            scale=self.scale,
        ).permute(0, 2, 1, 3)

        # [B, N_q, H, C/H] -> [B, N_q, C]
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class TwoStreamBlock(nn.Module):
    def __init__(
        self,
        dim_latent: int,
        dim_input: int,
        num_basic_blocks: int = 4,
        num_heads: int = 16,
        qkv_bias: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        ff_drop: float = 0.0,
        norm_x_input: bool = True,
        dim_cross: Optional[int] = None,
    ):
        super().__init__()

        # Define the fuse block that fuse the input into the latent
        self.fuse_block_in = FuseBlock(
            dim_latent,
            dim_input,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            ff_drop=ff_drop,
            norm_x_input=norm_x_input,
        )

        # Define the transformer block that process the latent
        self.transformer_block = nn.ModuleList(
            [
                BasicBlock(
                    dim_latent,
                    kv_dim=dim_cross,
                    num_heads=num_heads,
                    qkv_bias=qkv_bias,
                    proj_drop=proj_drop,
                    ff_drop=ff_drop,
                )
                for _ in range(num_basic_blocks)
            ]
        )

        # Define the fuse block that fuse the latent into the input
        self.fuse_block_out = FuseBlock(
            dim_input,
            dim_latent,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            ff_drop=ff_drop,
            norm_x_input=norm_x_input,
        )

    def forward(self, latent, input, cross_input):
        latent = self.fuse_block_in(latent, input)
        for block in self.transformer_block:
            latent = block(latent, cross_input)
        input = self.fuse_block_out(input, latent)
        return latent, input


class TwoStreamInterleaveTransformer(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        num_attention_heads: int = 16
        attention_head_dim: int = 64
        raw_triplane_channels: int = 1024
        triplane_channels: int = 1024
        raw_image_channels: int = 1024
        num_latents: int = 1792
        num_blocks: int = 4
        num_basic_blocks: int = 3
        dropout: float = 0.0
        latent_init_std: float = 0.02
        norm_num_groups: int = 32
        attention_bias: bool = False
        norm_x_input: bool = False
        cross_attention_dim: int = 1024
        mix_latent: bool = True

    cfg: Config

    def configure(self) -> None:
        self.mix_latent = self.cfg.mix_latent

        # Define the dimensions
        self.num_attention_heads = self.cfg.num_attention_heads
        self.attention_head_dim = self.cfg.attention_head_dim
        self.num_latents = self.cfg.num_latents
        self.latent_dim = self.num_attention_heads * self.attention_head_dim

        # Define input layers
        if self.cfg.norm_num_groups > 0:
            self.norm_triplane = torch.nn.GroupNorm(
                num_groups=self.cfg.norm_num_groups,
                num_channels=self.cfg.raw_triplane_channels,
                eps=1e-6,
                affine=True,
            )
        else:
            self.norm_triplane = nn.LayerNorm(self.cfg.raw_triplane_channels)
        self.proj_triplane = nn.Linear(
            self.cfg.raw_triplane_channels, self.cfg.triplane_channels
        )
        if self.mix_latent:
            self.norm_image = nn.LayerNorm(self.cfg.raw_image_channels)
            self.proj_image = nn.Linear(self.cfg.raw_image_channels, self.latent_dim)
        self.norm_latent = nn.LayerNorm(self.latent_dim)
        self.proj_latent = nn.Linear(self.latent_dim, self.latent_dim)

        # Define the latents
        self.latent_init = nn.Parameter(
            torch.zeros(1, self.num_latents, self.latent_dim)
        )
        nn.init.normal_(self.latent_init, std=self.cfg.latent_init_std)

        # Define the transformer blocks
        self.main_blocks = nn.ModuleList(
            [
                TwoStreamBlock(
                    self.latent_dim,
                    self.cfg.triplane_channels,
                    num_basic_blocks=self.cfg.num_basic_blocks,
                    num_heads=self.num_attention_heads,
                    qkv_bias=self.cfg.attention_bias,
                    proj_drop=self.cfg.dropout,
                    ff_drop=self.cfg.dropout,
                    norm_x_input=self.cfg.norm_x_input,
                    dim_cross=self.cfg.cross_attention_dim,
                )
                for _ in range(self.cfg.num_blocks)
            ]
        )

        # 4. Define output layers
        self.proj_out = nn.Linear(
            self.cfg.triplane_channels, self.cfg.raw_triplane_channels
        )

    def forward(self, hidden_states, encoder_hidden_states, **kwargs):
        # hidden_states: [B, triplane_dim, N_triplane] is triplane tokens
        # encoder_hidden_states: [B, N_image, image_dim] is the image tokens
        if isinstance(self.norm_triplane, nn.GroupNorm):
            triplane_tokens = self.norm_triplane(hidden_states)
            triplane_tokens = triplane_tokens.permute(
                0, 2, 1
            )  # [B, N_triplane, triplane_dim]
        elif isinstance(self.norm_triplane, nn.LayerNorm):
            triplane_tokens = self.norm_triplane(hidden_states.permute(0, 2, 1))
        else:
            raise ValueError("Unknown normalization layer")
        triplane_tokens = self.proj_triplane(triplane_tokens)
        if self.mix_latent:
            image_tokens = self.norm_image(
                encoder_hidden_states
            )  # [B, N_image, image_dim]
            image_tokens = self.proj_image(image_tokens)
        init_latents = self.latent_init.expand(
            hidden_states.shape[0], -1, -1
        )  # [B, N_latent_init, latent_dim]
        init_latents = self.norm_latent(init_latents)
        init_latents = self.proj_latent(init_latents)
        if self.mix_latent:
            latent_tokens = torch.cat(
                [image_tokens, init_latents], dim=1
            )  # [B, N_latent, latent_dim]
        else:
            latent_tokens = init_latents

        # forward the main blocks
        for block in self.main_blocks:
            latent_tokens, triplane_tokens = block(
                latent_tokens, triplane_tokens, encoder_hidden_states
            )

        # project the triplane tokens back to the original dimension
        triplane_tokens = self.proj_out(triplane_tokens).permute(0, 2, 1).contiguous()
        triplane_tokens = triplane_tokens + hidden_states
        return triplane_tokens