Spaces:
Runtime error
Runtime error
File size: 11,075 Bytes
d945eeb ecf9fe8 d945eeb ecf9fe8 d945eeb 950d954 d945eeb ecf9fe8 7676ca2 d945eeb ecf9fe8 d945eeb ecf9fe8 d945eeb 3dd07dc d945eeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import os
import tempfile
import time
from functools import lru_cache
from typing import Any
import gradio as gr
import numpy as np
import rembg
import torch
from gradio_litmodel3d import LitModel3D
from PIL import Image
import sf3d.utils as sf3d_utils
from sf3d.system import SF3D
import devicetorch
rembg_session = rembg.new_session()
DEVICE = devicetorch.get(torch)
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 1.6
COND_FOVY_DEG = 40
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
)
model = SF3D.from_pretrained(
# "stabilityai/stable-fast-3d",
"cocktailpeanut/sf3d",
config_name="config.yaml",
weight_name="model.safetensors",
)
#model.eval().cuda()
model.eval().to(DEVICE)
example_files = [
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]
def run_model(input_image):
start = time.time()
with torch.no_grad():
if DEVICE == "cuda":
with torch.autocast(device_type="cuda", dtype=torch.float16):
model_batch = create_batch(input_image)
model_batch = {k: v.cuda() for k, v in model_batch.items()}
trimesh_mesh, _glob_dict = model.generate_mesh(model_batch, 1024)
trimesh_mesh = trimesh_mesh[0]
else:
model_batch = create_batch(input_image)
model_batch = {k: v.to(DEVICE) for k, v in model_batch.items()}
trimesh_mesh, _glob_dict = model.generate_mesh(model_batch, 1024)
trimesh_mesh = trimesh_mesh[0]
# Create new tmp file
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
print("Generation took:", time.time() - start, "s")
return tmp_file.name
def create_batch(input_image: Image) -> dict[str, Any]:
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Add batch dim
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
return batched
@lru_cache
def checkerboard(squares: int, size: int, min_value: float = 0.5):
base = np.zeros((squares, squares)) + min_value
base[1::2, ::2] = 1
base[::2, 1::2] = 1
repeat_mult = size // squares
return (
base.repeat(repeat_mult, axis=0)
.repeat(repeat_mult, axis=1)[:, :, None]
.repeat(3, axis=-1)
)
def remove_background(input_image: Image) -> Image:
return rembg.remove(input_image, session=rembg_session)
def resize_foreground(
image: Image,
ratio: float,
) -> Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image, mode="RGBA").resize(
(COND_WIDTH, COND_HEIGHT)
)
return new_image
def square_crop(input_image: Image) -> Image:
# Perform a center square crop
min_size = min(input_image.size)
left = (input_image.size[0] - min_size) // 2
top = (input_image.size[1] - min_size) // 2
right = (input_image.size[0] + min_size) // 2
bottom = (input_image.size[1] + min_size) // 2
return input_image.crop((left, top, right, bottom)).resize(
(COND_WIDTH, COND_HEIGHT)
)
def show_mask_img(input_image: Image) -> Image:
img_numpy = np.array(input_image)
alpha = img_numpy[:, :, 3] / 255.0
chkb = checkerboard(32, 512) * 255
new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
return Image.fromarray(new_img.astype(np.uint8), mode="RGB")
def run_button(run_btn, input_image, background_state, foreground_ratio):
if run_btn == "Run":
glb_file: str = run_model(background_state)
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(value=glb_file, visible=True),
gr.update(visible=True),
)
elif run_btn == "Remove Background":
rem_removed = remove_background(input_image)
sqr_crop = square_crop(rem_removed)
fr_res = resize_foreground(sqr_crop, foreground_ratio)
return (
gr.update(value="Run", visible=True),
sqr_crop,
fr_res,
gr.update(value=show_mask_img(fr_res), visible=True),
gr.update(value=None, visible=False),
gr.update(visible=False),
)
def requires_bg_remove(image, fr):
if image is None:
return (
gr.update(visible=False, value="Run"),
None,
None,
gr.update(value=None, visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
alpha_channel = np.array(image.getchannel("A"))
min_alpha = alpha_channel.min()
if min_alpha == 0:
print("Already has alpha")
sqr_crop = square_crop(image)
fr_res = resize_foreground(sqr_crop, fr)
return (
gr.update(value="Run", visible=True),
sqr_crop,
fr_res,
gr.update(value=show_mask_img(fr_res), visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
return (
gr.update(value="Remove Background", visible=True),
None,
None,
gr.update(value=None, visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
def update_foreground_ratio(img_proc, fr):
foreground_res = resize_foreground(img_proc, fr)
return (
foreground_res,
gr.update(value=show_mask_img(foreground_res)),
)
with gr.Blocks() as demo:
img_proc_state = gr.State()
background_remove_state = gr.State()
gr.Markdown("""
# SF3D: Stable Fast 3D Mesh Reconstruction with UV-unwrapping and Illumination Disentanglement
**SF3D** is a state-of-the-art method for 3D mesh reconstruction from a single image.
This demo allows you to upload an image and generate a 3D mesh model from it.
**Tips**
1. If the image already has an alpha channel, you can skip the background removal step.
2. You can adjust the foreground ratio to control the size of the foreground object. This can influence the shape
3. You can upload your own HDR environment map to light the 3D model.
""")
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_img = gr.Image(
type="pil", label="Input Image", sources="upload", image_mode="RGBA"
)
preview_removal = gr.Image(
label="Preview Background Removal",
type="pil",
image_mode="RGB",
interactive=False,
visible=False,
)
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05,
)
foreground_ratio.change(
update_foreground_ratio,
inputs=[img_proc_state, foreground_ratio],
outputs=[background_remove_state, preview_removal],
)
run_btn = gr.Button("Run", variant="primary", visible=False)
with gr.Column():
output_3d = LitModel3D(
label="3D Model",
visible=False,
clear_color=[0.0, 0.0, 0.0, 0.0],
tonemapping="aces",
contrast=1.0,
scale=1.0,
)
with gr.Column(visible=False, scale=1.0) as hdr_row:
gr.Markdown("""## HDR Environment Map
Select an HDR environment map to light the 3D model. You can also upload your own HDR environment maps.
""")
with gr.Row():
hdr_illumination_file = gr.File(
label="HDR Env Map", file_types=[".hdr"], file_count="single"
)
example_hdris = [
os.path.join("demo_files/hdri", f)
for f in os.listdir("demo_files/hdri")
]
hdr_illumination_example = gr.Examples(
examples=example_hdris,
inputs=hdr_illumination_file,
)
hdr_illumination_file.change(
lambda x: gr.update(env_map=x.name if x is not None else None),
inputs=hdr_illumination_file,
outputs=[output_3d],
)
examples = gr.Examples(
examples=example_files,
inputs=input_img,
)
input_img.change(
requires_bg_remove,
inputs=[input_img, foreground_ratio],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
],
)
run_btn.click(
run_button,
inputs=[
run_btn,
input_img,
background_remove_state,
foreground_ratio,
],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
],
)
demo.launch()
|