Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,45 +14,45 @@ from optillm.leap import leap
|
|
14 |
|
15 |
API_KEY = os.environ.get("OPENROUTER_API_KEY")
|
16 |
|
17 |
-
def
|
18 |
-
message,
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
max_tokens,
|
24 |
-
temperature,
|
25 |
-
top_p,
|
26 |
-
):
|
27 |
client = OpenAI(api_key=API_KEY, base_url="https://openrouter.ai/api/v1")
|
28 |
-
system_prompt = system_message
|
29 |
-
initial_query = message
|
30 |
messages = [{"role": "system", "content": system_message}]
|
31 |
-
|
32 |
for val in history:
|
33 |
-
if val[0]:
|
34 |
-
|
35 |
-
if val[1]:
|
36 |
-
messages.append({"role": "assistant", "content": val[1]})
|
37 |
-
|
38 |
messages.append({"role": "user", "content": message})
|
39 |
|
40 |
-
if approach ==
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
return final_response
|
58 |
|
@@ -68,32 +68,69 @@ def respond(
|
|
68 |
# response += token
|
69 |
# yield response
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
"""
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
gr.
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
)
|
95 |
-
|
96 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
if __name__ == "__main__":
|
99 |
demo.launch()
|
|
|
14 |
|
15 |
API_KEY = os.environ.get("OPENROUTER_API_KEY")
|
16 |
|
17 |
+
def compare_responses(message, model1, approach1, model2, approach2, system_message, max_tokens, temperature, top_p):
|
18 |
+
response1 = respond(message, [], model1, approach1, system_message, max_tokens, temperature, top_p)
|
19 |
+
response2 = respond(message, [], model2, approach2, system_message, max_tokens, temperature, top_p)
|
20 |
+
return response1, response2
|
21 |
+
|
22 |
+
def respond(message, history, model, approach, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
23 |
client = OpenAI(api_key=API_KEY, base_url="https://openrouter.ai/api/v1")
|
|
|
|
|
24 |
messages = [{"role": "system", "content": system_message}]
|
|
|
25 |
for val in history:
|
26 |
+
if val[0]: messages.append({"role": "user", "content": val[0]})
|
27 |
+
if val[1]: messages.append({"role": "assistant", "content": val[1]})
|
|
|
|
|
|
|
28 |
messages.append({"role": "user", "content": message})
|
29 |
|
30 |
+
if approach == "none":
|
31 |
+
response = client.chat.completions.create(
|
32 |
+
model=model,
|
33 |
+
messages=messages,
|
34 |
+
max_tokens=max_tokens,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p,
|
37 |
+
)
|
38 |
+
return response.choices[0].message.content
|
39 |
+
else:
|
40 |
+
if approach == 'rto':
|
41 |
+
final_response = round_trip_optimization(system_prompt, initial_query, client, model)
|
42 |
+
elif approach == 'z3':
|
43 |
+
z3_solver = Z3SolverSystem(system_prompt, client, model)
|
44 |
+
final_response = z3_solver.process_query(initial_query)
|
45 |
+
elif approach == "self_consistency":
|
46 |
+
final_response = advanced_self_consistency_approach(system_prompt, initial_query, client, model)
|
47 |
+
elif approach == "rstar":
|
48 |
+
rstar = RStar(system_prompt, client, model)
|
49 |
+
final_response = rstar.solve(initial_query)
|
50 |
+
elif approach == "cot_reflection":
|
51 |
+
final_response = cot_reflection(system_prompt, initial_query, client, model)
|
52 |
+
elif approach == 'plansearch':
|
53 |
+
final_response = plansearch(system_prompt, initial_query, client, model)
|
54 |
+
elif approach == 'leap':
|
55 |
+
final_response = leap(system_prompt, initial_query, client, model)
|
56 |
|
57 |
return final_response
|
58 |
|
|
|
68 |
# response += token
|
69 |
# yield response
|
70 |
|
71 |
+
def create_model_dropdown():
|
72 |
+
return gr.Dropdown(
|
73 |
+
["nousresearch/hermes-3-llama-3.1-405b:free", "meta-llama/llama-3.1-8b-instruct:free",
|
74 |
+
"qwen/qwen-2-7b-instruct:free", "google/gemma-2-9b-it:free", "mistralai/mistral-7b-instruct:free"],
|
75 |
+
value="nousresearch/hermes-3-llama-3.1-405b:free", label="Model"
|
76 |
+
)
|
77 |
+
|
78 |
+
def create_approach_dropdown():
|
79 |
+
return gr.Dropdown(
|
80 |
+
["none", "leap", "plansearch", "rstar", "cot_reflection", "rto", "self_consistency", "z3"],
|
81 |
+
value="none", label="Approach"
|
82 |
+
)
|
83 |
+
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown("# LLM Optimization Comparison")
|
86 |
+
|
87 |
+
with gr.Row():
|
88 |
+
system_message = gr.Textbox(value="", label="System message")
|
89 |
+
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
90 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
91 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
92 |
+
|
93 |
+
with gr.Tabs():
|
94 |
+
with gr.TabItem("Single Chat"):
|
95 |
+
model = create_model_dropdown()
|
96 |
+
approach = create_approach_dropdown()
|
97 |
+
chatbot = gr.Chatbot()
|
98 |
+
msg = gr.Textbox()
|
99 |
+
clear = gr.Button("Clear")
|
100 |
+
|
101 |
+
def user(user_message, history):
|
102 |
+
return "", history + [[user_message, None]]
|
103 |
+
|
104 |
+
def bot(history, model, approach, system_message, max_tokens, temperature, top_p):
|
105 |
+
user_message = history[-1][0]
|
106 |
+
bot_message = respond(user_message, history[:-1], model, approach, system_message, max_tokens, temperature, top_p)
|
107 |
+
history[-1][1] = bot_message
|
108 |
+
return history
|
109 |
+
|
110 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot]).then(
|
111 |
+
bot, [chatbot, model, approach, system_message, max_tokens, temperature, top_p], chatbot
|
112 |
+
)
|
113 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
114 |
+
|
115 |
+
with gr.TabItem("Compare"):
|
116 |
+
with gr.Row():
|
117 |
+
model1 = create_model_dropdown()
|
118 |
+
approach1 = create_approach_dropdown()
|
119 |
+
model2 = create_model_dropdown()
|
120 |
+
approach2 = create_approach_dropdown()
|
121 |
+
|
122 |
+
compare_input = gr.Textbox(label="Enter your message for comparison")
|
123 |
+
compare_button = gr.Button("Compare")
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
output1 = gr.Textbox(label="Response 1")
|
127 |
+
output2 = gr.Textbox(label="Response 2")
|
128 |
+
|
129 |
+
compare_button.click(
|
130 |
+
compare_responses,
|
131 |
+
inputs=[compare_input, model1, approach1, model2, approach2, system_message, max_tokens, temperature, top_p],
|
132 |
+
outputs=[output1, output2]
|
133 |
+
)
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
demo.launch()
|