File size: 2,646 Bytes
c9e8e4a 1e8c169 c9e8e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from transformers import pipeline
import torch
import json
@st.cache(allow_output_mutation=True)
def load_tokenizer(model_ckpt):
return AutoTokenizer.from_pretrained(model_ckpt)
@st.cache(allow_output_mutation=True)
def load_model(model_ckpt):
model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True)
return model
@st.cache()
def load_examples():
with open("examples.json", "r") as f:
examples = json.load(f)
return examples
st.set_page_config(page_icon=':laptop:', layout="wide")
st.sidebar.header("Models:")
models = ["CodeParrot", "OPT", "InCoder"]
selected_models = st.multiselect('Select code generation models to compare',
models,
default=["CodeParrot"])
st.sidebar.header("Tasks:")
taks = ["Model architecture", "Model evaluation", "Pretraining dataset", "Prompting"]
selected_task = st.sidebar.selectbox("Select a task:", tasks, default="Model architecture")
st.title("Code Generation Models👩💻")
architectures = {}
datasets = {}
pipelines = {}
if selected_task == "Model architecture":
st.markdown("## Model architectures")
for model in selected_models:
with open(f"datasets/{model.lower()}.txt", "r") as f:
text = f.read()
#architectures[model] = text
st.markdown(f"### {model}:")
st.markdown(text)
elif selected_task == "Pretraining dataset":
st.markdown("## Pretraining Datasets")
for model in selected_models:
with open(f"datasets/{model.lower()}.txt", "r") as f:
text = f.read()
#datasets[model] = text
st.markdown(f"### {model}:")
st.markdown(text)
elif selected_task == "Prompting":
for model in selected_models:
if model == "CodeParrot":
tokenizer = load_tokenizer("lvwerra/codeparrot")
model = load_model("lvwerra/codeparrot")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
pipelines[model] = pipe
elif model == "InCoder":
tokenizer = load_tokenizer("facebook/incoder-1B")
model = load_model("facebook/incoder-1B")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
pipelines[model] = pipe
else:
tokenizer = load_tokenizer("facebook/opt-1.3b")
model = load_model("facebook/opt-1.3b")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
pipelines[model] = pipe
|