File size: 1,388 Bytes
2619765 ce77f8f 98b32c1 d97087d c0a7d69 4fa0d0f 98b32c1 ce77f8f 005c24f 4fa0d0f fda9fad 4fa0d0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
[CodeParrot](https://huggingface.co/lvwerra/codeparrot) uses GPT-2 architecture with BPE tokenizer trained on Python code from the training split of the data, and a context length of 1024. We released this model as an educational tool for training large language models from scratch on code, with detailed tutorials and descriptions of the training process. It makes use of 🤗 [`accelerate`](https://huggingface.co/docs/accelerate/index) for distributed training and mixed precision. See this [blog](https://huggingface.co/blog/codeparrot) and [repo](https://github.com/huggingface/transformers/tree/main/examples/research_projects/codeparrot) for more details. <div align="center"> |Model | # parameters | | - | - | | GPT2 | 110M | | GPT2 | 1.5B | </div> You can load the model and tokenizer directly from 🤗 [`transformers`](https://huggingface.co/docs/transformers/index): ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("lvwerra/codeparrot") model = AutoModelWithLMHead.from_pretrained("lvwerra/codeparrot") inputs = tokenizer("def hello_world():", return_tensors="pt") outputs = model(**inputs) ``` You can also use `pipeline` to generate code: ```python from transformers import pipeline pipe = pipeline("text-generation", model="lvwerra/codeparrot") outputs = pipe("def hello_world():") ``` |