File size: 2,925 Bytes
c9e8e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from transformers import pipeline
import torch
import json


@st.cache(allow_output_mutation=True)
def load_tokenizer(model_ckpt):
    return AutoTokenizer.from_pretrained(model_ckpt)

@st.cache(allow_output_mutation=True)
def load_model(model_ckpt):
    model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True)
    return model

@st.cache()
def load_examples():
    with open("examples.json", "r") as f:
        examples = json.load(f)
    return examples

st.set_page_config(page_icon=':parrot:', layout="wide")

tokenizer1 = load_tokenizer("lvwerra/codeparrot")
model1 = load_model("lvwerra/codeparrot")

tokenizer2 = load_tokenizer("facebook/opt-1.3b")
model2 = load_model("facebook/opt-1.3b")

tokenizer3 = load_tokenizer("facebook/incoder-1B")
model3 = load_model("facebook/incoder-1B")

st.sidebar.header("Models:")
models = ["CodeParrot", "OPT", "InCoder"]
selected_models = st.multiselect('Select code generation models to compare', 
                         models,
                         default=["CodeParrot"])
st.sidebar.header("Tasks:")
taks = ["Model architecture", "Model evaluation", "Pretraining dataset", "Prompting"]
selected_task = st.sidebar.selectbox("Select a task:", tasks, default="Model architecture")

st.title("Code Generation Models👩‍💻")

architectures = {}
datasets = {}
pipelines = {}
if selected_task == "Model architecture":
    st.markdown("## Model architectures")
    for model in selected_models:
        with open(f"datasets/{model.lower()}.txt", "r") as f:
            text = f.read()
        #architectures[model] = text   
        st.markdown(f"### {model}:")
        st.markdown(text)
        
elif selected_task == "Pretraining dataset":
    st.markdown("## Pretraining Datasets")
    for model in selected_models:
        with open(f"datasets/{model.lower()}.txt", "r") as f:
            text = f.read()
        #datasets[model] = text 
        st.markdown(f"### {model}:")
        st.markdown(text)
        
elif selected_task == "Prompting":
    for model in selected_models:
        if model == "CodeParrot":
            tokenizer = load_tokenizer("lvwerra/codeparrot")
            model = load_model("lvwerra/codeparrot")
            pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
            pipelines[model] = pipe
        elif model == "InCoder":
            tokenizer = load_tokenizer("facebook/incoder-1B")
            model = load_model("facebook/incoder-1B")
            pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
            pipelines[model] = pipe
        else:
            tokenizer = load_tokenizer("facebook/opt-1.3b")
            model = load_model("facebook/opt-1.3b")
            pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
            pipelines[model] = pipe