loubnabnl's picture
loubnabnl HF staff
make blog
0d5adbc
raw
history blame
3.76 kB
import json
import pandas as pd
import requests
from multiprocessing import Pool
from functools import partial
import streamlit as st
GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
INCODER_IMG = (
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
)
MODELS = ["CodeParrot", "InCoder"]
@st.cache()
def load_examples():
with open("utils/examples.json", "r") as f:
examples = json.load(f)
return examples
def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
url = (
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
)
r = requests.post(
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
)
generated_text = r.json()["data"][0]
return generated_text
st.set_page_config(page_icon=":laptop:", layout="wide")
# Introduction
st.title("Code generation with πŸ€—")
with open("utils/intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
# Pretraining datasets
st.title("1 - Pretraining datasets πŸ“š")
st.markdown(
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
)
df = pd.read_csv("utils/data_preview.csv")
st.dataframe(df)
st.header("Model")
selected_model = st.selectbox(
"Select a code generation model", MODELS, default=["CodeParrot"]
)
with open(f"datasets/{selected_model.lower()}.txt", "r") as f:
text = f.read()
st.markdown(text)
# Model architecture
st.title("Model architecture")
st.markdow("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.")
st.header("Model")
selected_model = st.selectbox(
"Select a code generation model", MODELS, default=["CodeParrot"]
)
with open(f"architectures/{selected_model.lower()}.txt", "r") as f:
text = f.read()
st.markdown(text)
if model == "InCoder":
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
# Model evaluation
st.title("Code models evaluation πŸ“Š")
with open("evaluation/intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
# Code generation
st.title("Code generation πŸ’»")
st.header("Models")
selected_models = st.sidebar.multiselect(
"Select code generation models to compare", MODELS, default=["CodeParrot"]
)
st.header("Examples")
examples = load_examples()
example_names = [example["name"] for example in examples]
name2id = dict([(name, i) for i, name in enumerate(example_names)])
selected_example = st.selectbox(
"Select one of the following examples or implement yours", example_names
)
example_text = examples[name2id[selected_example]]["value"]
default_length = examples[name2id[selected_example]]["length"]
st.header("Generation settings")
temperature = st.slider(
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
)
max_new_tokens = st.slider(
"Number of tokens to generate:",
value=default_length,
min_value=8,
step=8,
max_value=256,
)
seed = st.slider(
"Random seed:", value=42, min_value=0, step=1, max_value=1000
)
gen_prompt = st.text_area(
"Generate code with prompt:",
value=example_text,
height=220,
).strip()
if st.button("Generate code!"):
with st.spinner("Generating code..."):
# Create a multiprocessing Pool
pool = Pool()
generate_parallel = partial(
generate_code,
gen_prompt=gen_prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
seed=seed,
)
output = pool.map(generate_parallel, selected_models)
for i in range(len(output)):
st.markdown(f"**{selected_models[i]}**")
st.code(output[i])