|
A popular evaluation framework for code generation models is the [pass@k](https://huggingface.co/metrics/code_eval) metric on [HumanEval](https://huggingface.co/datasets/openai_humaneval) dataset, which was introduced in [Codex paper](https://arxiv.org/pdf/2107.03374v2.pdf). The dataset includes 164 handwritten programming problems. In the pass@k metric, k code samples are generated per problem, and a problem is considered solved if any sample passes the unit tests and the total fraction of problems solved is reported. |
|
In most papers, 200 candidate program completions are sampled, and pass@1, pass@10, and pass@100 are computed using an unbiased sampling estimator. The table below shows the HumanEval scores of CodeParrot, InCoder, GPT-neo, GPT-J and Codex (not open-source). |
|
|
|
|
|
| Model | pass@1 | pass@10 | pass@100| |
|
|-------|--------|---------|---------| |
|
|CodeParrot (110M) | 3.80% | 6.57% | 12.78% | |
|
|CodeParrot (1.5B) | 3.58% | 8.03% | 14.96% | |
|
||||| |
|
|InCoder (6.7B) | 15.2% | 27.8% | 47.00% | |
|
||||| |
|
|Codex (25M)| 3.21% | 7.1% | 12.89%| |
|
|Codex (300M)| 13.17%| 20.37% | 36.27% | |
|
|Codex (12B)| 28.81%| 46.81% | 72.31% | |
|
||||| |
|
|GPT-neo (1.5B)| 4.79% | 7.47% | 16.30% | |
|
|GPT-J (6B)| 11.62% | 15.74% | 27.74% | |
|
|
|
We can load HumanEval dataset and pass@k metric from π€ [`datasets`](https://huggingface.co/docs/datasets/index) |
|
|
|
```python |
|
from datasets import load_dataset, load_metric |
|
|
|
human_eval = load_dataset("openai_humaneval") |
|
code_eval_metric = load_metric("code_eval") |
|
``` |
|
|
|
We can easily compute the pass@k for a problem that asks for the implementation of a function that sums two integers: |
|
|
|
```python |
|
test_cases = ["assert add(2,3)==5"] |
|
candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] |
|
pass_at_k, results = code_eval_metric.compute(references=test_cases, predictions=candidates, k=[1, 2]) |
|
print(pass_at_k) |
|
{'pass@1': 0.5, 'pass@2': 1.0} |
|
``` |
|
|
|
To better understand how pass@k metric works, we will illustrate it with some concrete examples. We select two problems from the HumanEval dataset and see how CodeParrot π¦ (110M) performs and which code completions pass the unit tests of the two problems below: |
|
|
|
**Problem 1:** |
|
|
|
```python |
|
|
|
from typing import List |
|
|
|
|
|
def separate_paren_groups(paren_string: str) -> List[str]: |
|
""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to |
|
separate those group into separate strings and return the list of those. |
|
Separate groups are balanced (each open brace is properly closed) and not nested within each other |
|
Ignore any spaces in the input string. |
|
>>> separate_paren_groups('( ) (( )) (( )( ))') |
|
['()', '(())', '(()())'] |
|
""" |
|
```` |
|
**Problem 2:** |
|
```python |
|
|
|
def truncate_number(number: float) -> float: |
|
""" Given a positive floating point number, it can be decomposed into |
|
and integer part (largest integer smaller than given number) and decimals |
|
(leftover part always smaller than 1). |
|
|
|
Return the decimal part of the number. |
|
>>> truncate_number(3.5) |
|
0.5 |
|
""" |
|
```` |
|
|
|
For each problem, instead of 200 candidate solutions, we will only generate 20 samples for illustration purposes. We use Nucleus sampling with `top-p=0.95` and `temperature=0.2`. For more details about decoding strategies for language generation, we recommend this [blog](https://huggingface.co/blog/how-to-generate). We will compute pass@1, pass@10 and pass@20, each correspending to unit test pass rate when selecting respectively 1, 10 and 20 samples from the candidate solutions. |
|
|
|
``` |
|
|
|
Results: {'pass@1': 0.0750, 'pass@10': 0.4473, 'pass@20': 0.5} |
|
|
|
```` |
|
|
|
If we take a closer look at the unit test results for each candidate solution in the two problems, we find that 3 passed the test for the second problem, and none did for the first problem. This means that we have 3 correct solutions among 40, which corresponds to our pass@1 value `3/40 = 0.075`. The scores pass@10 and pass@20 are higher, because the more samples we select from the candidate completions, the more likely we are to include the correct implementation. As |
|
for pass@20, it is `1/2 = 0.5`, since if we select all 20 candidates for each problem, the second problem get solved which gives 50% success rate. If you are curious about the candidate solutions that passed the tests, they all implemented this function: |
|
|
|
```python |
|
|
|
def truncate_number(number: float) -> float: |
|
""" Given a positive floating point number, it can be decomposed into |
|
and integer part (largest integer smaller than given number) and decimals |
|
(leftover part always smaller than 1). |
|
|
|
Return the decimal part of the number. |
|
>>> truncate_number(3.5) |
|
0.5 |
|
""" |
|
return number % 1 |
|
``` |