|
[ |
|
{ |
|
"name": "Hello World!", |
|
"value": "def print_hello_world():\n \"\"\"Print 'Hello World!'.\"\"\"", |
|
"length": 8 |
|
}, |
|
{ |
|
"name": "Filesize", |
|
"value": "def get_file_size(filepath):", |
|
"length": 64 |
|
}, |
|
{ |
|
"name": "Python to Numpy", |
|
"value": "# native Python:\ndef mean(a):\n return sum(a)/len(a)\n\n# with numpy:\nimport numpy as np\n\ndef mean(a):", |
|
"length": 16 |
|
}, |
|
{ |
|
"name": "unittest", |
|
"value": "def is_even(value):\n \"\"\"Returns True if value is an even number.\"\"\"\n return value % 2 == 0\n\n# setup unit tests for is_even\nimport unittest", |
|
"length": 64 |
|
|
|
}, |
|
{ |
|
"name": "Scikit-Learn", |
|
"value": "import numpy as np\nfrom sklearn.ensemble import RandomForestClassifier\n\n# create training data\nX = np.random.randn(100, 100)\ny = np.random.randint(0, 1, 100)\n\n# setup train test split", |
|
"length": 96 |
|
}, |
|
{ |
|
"name": "Pandas", |
|
"value": "# load dataframe from csv\ndf = pd.read_csv(filename)\n\n# columns: \"age_group\", \"income\"\n# calculate average income per age group", |
|
"length": 16 |
|
}, |
|
{ |
|
"name": "Transformers", |
|
"value": "from transformers import AutoTokenizer, AutoModelForSequenceClassification\n\n# build a BERT classifier", |
|
"length": 48 |
|
} |
|
] |